已知函数
。
(Ⅰ)求
的单调区间;
(Ⅱ)若
,证明当
时,函数
的图象恒在函数
图象的上方.
(Ⅰ)单调递减区间是
。单调递增区间是
;(Ⅱ)参考解析.
解析试题分析:(Ⅰ)本小题含对数式的函数,首先确定定义域.通过求导就可知道函数的单调区间.本题的易错易漏点就是定义域的范围.(Ⅱ)函数
的图象恒在函数
图象的上方等价于两个函数的对减后的值恒大于零(设在上方的减去在下方的).所以转化成在x>1上的恒大于零的问题.通过构造新的函数,对其求导,得到函数在x>1上为递增函数.又f(1)>0.所以函数恒大于零.即函数
的图象恒在函数
图象的上方成立.
试题解析:解:(Ⅰ)
的定义域为
,
又
求得:
2分
令
,则
3分
当
变化时,
的变化情况如下表:
故![]()
![]()
1 ![]()
![]()
- 0 + ![]()
↘ 极小值 ↗
的单调递减区间是
。单调递增区间是
6分
(Ⅱ)令![]()
则
8分![]()
在
上单调递增 10分
又![]()
![]()
∴当
时,
的图象恒在
图象的上方. 12分
考点:1.含对数的函数的求导数.2.应用函数的单调性解决一些问题.
科目:高中数学 来源: 题型:解答题
某商场预计2014年从1月起前
个月顾客对某种商品的需求总量
(单位:件)
(1)写出第
个月的需求量
的表达式;
(2)若第
个月的销售量
(单位:件),每件利润
(单位:元),求该商场销售该商品,预计第几个月的月利润达到最大值?月利润的最大值是多少?(参考数据:
)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
,
(
)
(1)若函数
存在极值点,求实数b的取值范围;
(2)求函数
的单调区间;
(3)当
且
时,令
,
(
),
(
)为曲线y=
上的两动点,O为坐标原点,能否使得
是以O为直角顶点的直角三角形,且斜边中点在y轴上?请说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
,恒过定点
.
(1)求实数
;
(2)在(1)的条件下,将函数
的图象向下平移1个单位,再向左平移
个单位后得到函数
,设函数
的反函数为
,直接写出
的解析式;
(3)对于定义在
上的函数
,若在其定义域内,不等式
恒成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数
,其中a为正实数.
(l)若x=0是函数
的极值点,讨论函数
的单调性;
(2)若
在
上无最小值,且
在
上是单调增函数,求a的取值范
围;并由此判断曲线
与曲线
在
交点个数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com