【题目】在如图所示的几何体中,
,
,
,
,
,二面角
的大小为
.
![]()
(1)求证:
平面
;
(2)求平面
与平面
所成的角(锐角)的大小;
(3)若
为
的中点,求直线
与平面
所成的角的大小.
【答案】(1)见解析;(2)
;(3)![]()
【解析】试题分析:(Ⅰ)由已知可得AC⊥CD,AC⊥CB,即∠BCD为二面角B﹣AC﹣E的平面角,即∠BCD=60°,求解三角形可得BD⊥DC,再由线面垂直的判定可得AC⊥平面BCD,得到AC⊥BD,进一步得到BD⊥平面ACDE;
(Ⅱ)由BD⊥平面ACDE,得BD⊥DC,BD⊥DE,可得DB,DC,DE两两垂直,分别以DB,DC,DE所在直线为x,y,z轴建立空间直角坐标系,求出所用点的坐标,得到平面BAE与平面BCD的一个法向量,由两法向量所成角的余弦值可得平面BCD与平面BAE所成的角;
(Ⅲ)若F为AB的中点,由(II)可得
,进一步得到
,由已知可得平面BDE的一个法向量为
,由
与
所成角的余弦值的绝对值可得直线EF与平面BDE所成角的大小.
试题解析:
(1)因为
,则
,
,
所以
为二面角
的平面角,即
,
在
中,
,
,
,
所以
,所以
,即
,
由
,
,且
,可知
平面
,
又
平面
,所以
,
又因为
,
平面
,
平面
,
所以
平面
.
(2)由
平面
得
,
,又
,即
,
,
两两垂直,
则以
,
,
分别为
轴,
轴,
轴的正方向建立空间直角坐标系,如图所示.
![]()
由(I)知
, 则
,
,
,
由
得
,
依题意
,
,
设平面
的一个法向量为
,
则
,即
,不妨设
,可得
,
由
平面
可知平面
的一个法向量为![]()
设平面
与平面
所成的角(锐角)为
,
所以
,于是
,
所以平面
与平面
所成的角(锐角)为
.
(3)若
为
的中点,则由(II)可得
,所以
,
依题意
平面
,可知平面
的一个法向量为
,
设直线
与平面
所成角为
,则
,所以直线
与平面
所成角的大小
.
科目:高中数学 来源: 题型:
【题目】如图,曲线
与正方形
:
的边界相切.
![]()
(1)求
的值;
(2)设直线
交曲线
于
,交
于
,是否存在这样的曲线
,使得
,
,
成等差数列?若存在,求出实数
的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
(
为参数),以坐标原点为极点,
轴为极轴建立极坐标系,曲线
的极坐标为
.
(1)求曲线
的普通方程和曲线
的直角坐标方程;
(2)若曲线
和曲线
有三个公共点,求以这三个公共点为顶点的三角形的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知在平面直角坐标系
中,直线
的参数方程为
(
为参数),曲线
的方程为
.以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系.
(1)求直线
和曲线
的极坐标方程;
(2)曲线
分别交直线
和曲线
于点
,求
的最大值及相应
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学现有6名包含
在内的男志愿者和4名包含
在内的女志愿者,这10名志愿者要参加第十三届全运会支援服务工作,从这些人中随机抽取5人参加田赛服务工作,另外5人参加径赛服务工作.
(1)求参加田赛服务工作的志愿者中包含
但不包含
的概率;
(2)设
表示参加径赛服务工作的女志愿者人数,求随机变量
的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经过函数性质的学习,我们知道:“函数
的图象关于
轴成轴对称图形”的充要条件是“
为偶函数”.
(1)若
为偶函数,且当
时,
,求
的解析式,并求不等式
的解集;
(2)某数学学习小组针对上述结论进行探究,得到一个真命题:“函数
的图象关于直线
成轴对称图形”的充要条件是“
为偶函数”.若函数
的图象关于直线
对称,且当
时,
.
(i)求
的解析式;
(ii)求不等式
的解集.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在多面体
中,已知
是边长为2的正方形,
为正三角形,
分别为
的中点,
且
,
.
![]()
(1)求证:
平面
;
(2)求证:
平面
;
(3)求
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正方体ABCD-A1B1C1D1的棱长为2,E为棱CC1的中点,点M在正方形BCC1B1内运动,且直线AM//平面A1DE,则动点M 的轨迹长度为( )
A.
B. π C. 2 D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
的参数方程为
(
为参数),以平面直角坐标系的原点为极点,正半轴为极轴,取相同的长度单位建立极坐标系,曲线
的极坐标方程为
.
(1)求直线
和曲线
的直角坐标方程,并指明曲线
的形状;
(2)设直线
与曲线
交于
两点,
为坐标原点,且
,求
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com