【题目】已知正方体ABCD-A1B1C1D1的棱长为2,E为棱CC1的中点,点M在正方形BCC1B1内运动,且直线AM//平面A1DE,则动点M 的轨迹长度为( )
A.
B. π C. 2 D. ![]()
【答案】D
【解析】
设平面DA1E与直线B1C1交于点F,连接AF、EF,则F为B1C1的中点.分别取B1B、BC的中点N、O,连接AN、ON、AO,可证出平面A1DE∥平面ANO,从而得到NO是平面BCC1B1内的直线.由此得到点M的轨迹被正方形BCC1B1截得的线段是线段ON.
解:设平面DA1E与直线B1C1交于点F,连接AF、EF,
则F为B1C1的中点.
分别取B1B、BC的中点N、O,连接AN、ON、AO,
则∵A1F∥AO,AN∥DE,A1F,DE平面A1DE,
AO,AN平面ANO,
∴A1F∥平面ANO.同理可得DE∥平面ANO,
∵A1F、DE是平面A1DE内的相交直线,
∴平面A1DE∥平面ANO,
所以NO∥平面A1DE,
∴直线NO平面A1DE,
∴M的轨迹被正方形BCC1B1截得的线段是线段NO.
∴M的轨迹被正方形BCC1B1截得的线段长NO
.
故选:D.
科目:高中数学 来源: 题型:
【题目】已知函数![]()
(Ⅰ)当
时,求函数
在点
处的切线方程;
(Ⅱ)当
时,讨论
的单调性;
(Ⅲ)是否存在实数
,对任意
,且
有
恒成立?
若存在,求出
的取值范围;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,
,
,
,
,
,二面角
的大小为
.
![]()
(1)求证:
平面
;
(2)求平面
与平面
所成的角(锐角)的大小;
(3)若
为
的中点,求直线
与平面
所成的角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列结论:①函数
和
是同一函数;②函数
的定义域为
,则函数
的定义域为
;③函数
的递增区间为
;其中正确的个数为( )
A.0个B.1个C.2个D.3个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,函数
.
⑴若
的定义域为
,求实数
的取值范围;
⑵当
,求函数
的最小值
;
⑶是否存在实数
,使得函数
的定义域为
,值域为
?若存在,求出
的值;若不存在,则说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】AB为过抛物线焦点F的弦,P为AB中点,A、B、P在准线l上射影分别为M、N、Q,则下列命题:
以AB为直径作圆,则此圆与准线l相交;
;
;
;
、O、N三点共线
为原点
,正确的是______ .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
(
)的左右焦点分别为
,
,若椭圆上一点
满足
,且椭圆
过点
,过点
的直线
与椭圆
交于两点
.
(1)求椭圆
的方程;
(2)过点
作
轴的垂线,交椭圆
于
,求证:
,
,
三点共线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题p:k2﹣8k﹣20≤0,命题q:方程
1表示焦点在x轴上的双曲线.
(1)命题q为真命题,求实数k的取值范围;
(2)若命题“p∨q”为真,命题“p∧q”为假,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)一个盒子里装有三张卡片,分别标记有数字
,
,
,这三张卡片除标记的数字外完全相同。随机有放回地抽取
次,每次抽取
张,将抽取的卡片上的数字依次记为
,
,
.
(Ⅰ)求“抽取的卡片上的数字满足
”的概率;
(Ⅱ)求“抽取的卡片上的数字
,
,
不完全相同”的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com