【题目】已知抛物线
的焦点为
,抛物线
的焦点为
.
(1)若过点
的直线
与抛物线
有且只有一个交点,求直线
的方程;
(2)若直线
与抛物线
交于
两点,求
的面积.
【答案】(1)x=0或y=1或y=x+1;(2)
.
【解析】试题分析:
(1)求出
,分类讨论,直线与抛物线方程联立,即可求解直线
的方程;
(2)直线
与抛物线联立,利用韦达定理,根据
的面积
,即可求解
的面积.
试题解析:
(1)∵抛物线C:y2=2px(p>0)的焦点为F(1,0),抛物线E:x2=2py的焦点为M,
∴p=2,M(0,1)
斜率不存在时,x=0,满足题意;
斜率存在时,设方程为y=kx+1,代入y2=4x,可得k2x2+(2k﹣4)x+1=0,
k=0时,x=
,满足题意,方程为y=1;
k≠0时,△=(2k﹣4)2﹣4k2=0,∴k=1,方程为y=x+1,
综上,直线l的方程为x=0或y=1或y=x+1;
(2)直线MF的方程为y=﹣x+1,代入y2=4x,可得y2+4y﹣4=0,
设A(x1,y1),B(x2,y2),则y1+y2=﹣4,y1y2=﹣4,
∴△OAB的面积S=
|OF||y1﹣y2|=
=2
.
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xoy中,抛物线y2=2px(p>0)的准线l与x轴交于点M,过点M的直线与抛物线交于A,B两点,设A(x1 , y1)到准线l的距离d=2λp(λ>0) ![]()
(1)若y1=d=3,求抛物线的标准方程;
(2)若
+λ
=
,求证:直线AB的斜率的平方为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点
在正视图上的对应点为
,圆柱表面上的点
在左视图上的对应点为
,则在此圆柱侧面上,从
到
的路径中,最短路径的长度为( )
![]()
A.
B.
C.
D. 2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在多面体
中,底面
为正方形,四边形
是矩形,平面
平面
.
![]()
(1)求证:平面
平面
;
(2)若过直线
的一个平面与线段
和
分别相交于点
和
(点
与点
均不重合),求证:
;
(3)判断线段
上是否存在一点
,使得平面
平面
?若存在,求
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在棱台ABC﹣FED中,△DEF与△ABC分别是棱长为1与2的正三角形,平面ABC⊥平面BCDE,四边形BCDE为直角梯形,BC⊥CD,CD=1,N为CE中点,
. ![]()
(Ⅰ)λ为何值时,MN∥平面ABC?
(Ⅱ)在(Ⅰ)的条件下,求直线AN与平面BMN所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=e2x+ln(x+a).
(1)当a=1时,①求f(x)在(0,1)处的切线方程;②当x≥0时,求证:f(x)≥(x+1)2+x.
(2)若存在x0∈[0,+∞),使得
成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,BC边上的高所在直线的方程为x-2y+1=0,∠A的平分线所在的直线方程为y=0.若点B的坐标为(1,2),求点A和点C的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
(
)的右焦点为
,右顶点为
,已知
,其中
为原点,
为椭圆的离心率.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过点
的直线
与椭圆交于点
(
不在
轴上),垂直于
的直线与
交于点
,与
轴交于点
,若
,且
,求直线的
斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某物流公司进行仓储机器人升级换代期间,第一年有机器人
台,平均每台机器人创收利润
万元.预测以后每年平均每台机器人创收利润都比上一年增加
万元,但该物流公司在用机器人数量每年都比上一年减少
.
(1)设第
年平均每台机器人创收利润为
万元,在用机器人数量为
台,求
,
的表达式;
(2)依上述预测,第几年该物流公司在用机器人创收的利润最多?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com