【题目】已知极坐标系的极点在直角坐标系的原点处,极轴与x轴非负半轴重合,直线
的极坐标方程为
,圆C的参数方程为
,
(1)求直线
被圆C所截得的弦长;
(2)已知点
,过点
的直线
与圆所相交于
不同的两点,求
.
科目:高中数学 来源: 题型:
【题目】如图,椭圆
的离心率为
,顶点为A1、A2、B1、B2 , 且
.![]()
(1)求椭圆C的方程;
(2)P是椭圆C上除顶点外的任意点,直线B2P交x轴于点Q,直线A1B2交A2P于点E.设A2P的斜率为k,EQ的斜率为m,试问2m﹣k是否为定值?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,面PAD⊥底面ABCD,且△PAD是边长为2的等边三角形,PC=
,M在PC上,且PA∥面BDM. ![]()
(1)求直线PC与平面BDM所成角的正弦值;
(2)求平面BDM与平面PAD所成锐二面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.
![]()
(Ⅰ)证明: BC1//平面A1CD;
(Ⅱ)设AA1= AC=CB=2,AB=2
,求三棱锥C一A1DE的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在△ABC中,DC⊥AB于D,BE⊥AC于E,BE交DC于点F,若BF=FC=3,DF=FE=2.![]()
(1)求证:ADAB=AEAC;
(2)求线段BC的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高校在2012年的自主招生考试成绩中随机抽取
名中学生的笔试成绩,按成绩分组,得到的频率分布表如表所示.
组号 | 分组 | 频数 | 频率 |
第1组 |
| 5 |
|
第2组 |
| ① |
|
第3组 |
| 30 | ② |
第4组 |
| 20 |
|
第5组 |
| 10 |
|
![]()
(1)请先求出频率分布表中
位置的相应数据,再完成频率分布直方图;
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第
组中用分层抽样抽取名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试;
(3)在(2)的前提下,学校决定在
名学生中随机抽取
名学生接受
考官进行面试,求:第
组至少有一名学生被考官
面试的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四边形ABCD和BCEG均为直角梯形,AD∥BC,CE∥BG,且
,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2 ![]()
(1)证明:AG∥平面BDE;
(2)求平面BDE和平面BAG所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一次抽样调查中测得样本的6组数据,得到一个变量
关于
的回归方程模型,其对应的数值如下表:
| 2 | 3 | 4 | 5 | 6 | 7 |
|
|
|
|
|
|
|
(1)请用相关系数
加以说明
与
之间存在线性相关关系(当
时,说明
与
之间具有线性相关关系);
(2)根据(1)的判断结果,建立
关于
的回归方程并预测当
时,对应的
值为多少(
精确到
).
附参考公式:回归方程
中斜率和截距的最小二乘法估计公式分别为:
,
,相关系数
公式为:
.
参考数据:
,
,
,
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com