精英家教网 > 高中数学 > 题目详情

不等式|2-x|≥2的解集是(  )

(A){x|x≥2}              (B){x|x≤-2}

(C){x|x≥4或x≤0}    (D){x|0≤x≤4}

C.由x-2≥2或x-2≤-2知x≥4或x≤0.故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ln(1+xx)-ax,其中a>0
(1)求函数f(x)的单调区间;
(2)如果a∈(0,1),当a≥0时,不等式f(x)-m<0的解集为空集,求实数m的取值范围;
(3)当x>1时,若g(x)=f[ln(x-1)]+aln(x-1),试证明:对n∈N*,当n≥2时,有g(
1
n!
)>-
n(n-1)
2

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),g(x),h(x),如果存在实数a,b,使得h(x)=af(x)+bg(x),那么称h(x)为f(x),g(x)的线性生成函数.
(1)给出如下两组函数,试判断h(x)是否分别为f(x),g(x)的线性生成函数,并说明理由.
第一组:f(x)=sinx,g(x)=cosx,h(x)=sin(x+
π
3
)

第二组:f(x)=x2-x,g(x)=x2+x+1,h(x)=x2-x+1.
(2)已知f(x)=log2x,g(x)=log0.5x的线性生成函数为h(x),其中a=2,b=1.若不等式3h2(x)+2h(x)+t<0在x∈[2,4]上有解,求实数t的取值范围;
(3)已知f(x)=x,g(x)=
1
x
,x∈[1,10]
的线性生成函数h(x),其中a>0,b>0.若h(x)≥b对a∈[1,2]恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值时,函数φ(x)=g(x)-kln(x-1)存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)、g(x)的定义域为R,且f(x)≥0的解集为{x|1≤x<2},g(x)≥0的解集为,则不等式f(x)·g(x)>0的解集为(    )

A.{x|1≤x<2}             B.R

C. ?                        D.{x|x<1或x≥2}

查看答案和解析>>

科目:高中数学 来源:2012-2013学年云南省红河州红河一中高一(上)12月月考数学试卷(解析版) 题型:选择题

定义域为R的偶函数f(x)在(0,+∞)上是增函数,且f(2)=0,则不等式xf(x)<0的解集为( )
A.{x|0<x<2}
B.{x|x<-2或0<x<2}
C.{x|-2<x<0}
D.{x|x<-2或x>2}

查看答案和解析>>

同步练习册答案