(理科)如图分别是正三棱台ABC-A1B1C1的直观图和正视图,O,O1分别是上下底面的中心,E是BC中点.![]()
(1)求正三棱台ABC-A1B1C1的体积;
(2)求平面EA1B1与平面A1B1C1的夹角的余弦;
(3) 若P是棱A1C1上一点,求CP+PB1的最小值.
(1)21;(2)
;(3)
解析试题分析:(1)由题意
,正三棱台高为
……..2分
………..4分
(2)设
分别是上下底面的中心,
是
中点,
是
中点.以
为原点,过
平行
的线为
轴建立空间直角坐标系
.
,
,
,
,
,
,
,
设平面
的一个法向量
,则
即![]()
取
,取平面
的一个法向
量
,设所求角为![]()
则
……..8分
(3)将梯形
绕
旋转到
,使其与
成平角![]()
![]()
,由余弦定理得![]()
即
的最小值为
……13分
考点:本题考查了空间中的线面关系
点评:高考中的立体几何问题主要是探求和证明空间几何体中的平行和垂直关系以及空间角、体积等计算问题.对于平行和垂直问题的证明或探求,其关键是把线线、线面、面面之间的关系进行灵活的转化.在寻找解题思路时,不妨采用分析法,从要求证的结论逐步逆推到已知条件.
科目:高中数学 来源: 题型:解答题
如图所示,已知AC ⊥平面CDE, BD ∥AC ,
为等边三角形,F为ED边上的中点,且
,![]()
(Ⅰ)求证:CF∥面ABE;
(Ⅱ)求证:面ABE ⊥平面BDE;
(Ⅲ)求该几何体ABECD的体积。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=
,AF=1,M是线段EF的中点.![]()
(Ⅰ)求证AM//平面BDE;
(Ⅱ)求二面角A-DF-B的大小;
(Ⅲ)试在线段AC上确定一点P,使得PF与BC所成的角是60°.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900。![]()
求证:(1)PC⊥BC;
(2)求点A到平面PBC的距离。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥
中,底面
为直角梯形,且
,
,侧面
底面
. 若
.![]()
(Ⅰ)求证:
平面
;
(Ⅱ)侧棱
上是否存在点
,使得
平面
?若存在,指出点
的位置并证明,若不存在,请说明理由;
(Ⅲ)求二面角
的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com