ÒÑÖªµãB1(1£¬y1)£¬B2(2£¬y2)£¬¡­£¬Bn(n£¬yn)£¬¡­£¬(n¡ÊN)˳´ÎΪֱÏßÉϵĵ㣬µãA1(x1£¬0)£¬A2(x2£¬0)£¬¡­£¬An(xn£¬0)˳´ÎΪxÖáÉϵĵ㣬ÆäÖÐx1£½a(0£¼a£¼1)£®¶ÔÓÚÈÎÒâ×ÔÈ»Êýn£¬µãAn£¬Bn£¬An£«1¹¹³ÉÒÔBnΪ¶¥µãµÄµÈÑüÈý½ÇÐΣ®

(1)ÇóÊýÁÐ{yn}µÄͨÏʽ£¬²¢Ö¤Ã÷ËüΪµÈ²îÊýÁУ»

(2)ÇóÖ¤£ºxn+2£­xnÊdz£Êý£¬²¢ÇóÊýÁÐ{xn}µÄͨÏʽ£»

(3)ÉÏÊöµÈÑü¡÷AnBnAn+1ÖÐÊÇ·ñ¿ÉÄÜ´æÔÚÖ±½ÇÈý½ÇÐΣ¬Èô¿ÉÄÜ£¬Çó³ö´ËʱaµÄÖµ£»Èô²»¿ÉÄÜ£¬Çë˵Ã÷ÀíÓÉ£®

´ð°¸£º
½âÎö£º

¡¡¡¡(1)Ϊ¶¨Öµ

¡¡¡¡(2)ÓÉÌâÒâµÃ

¡¡¡¡

¡¡¡¡(3)µ±nÎªÆæÊýʱ£¬

¡¡¡¡µ±nΪżÊýʱ£¬

¡¡¡¡×÷

¡¡¡¡ÒªÊ¹µÈÑüÈý½ÇÐÎΪֱ½ÇÈý½ÇÐΣ¬Ôò

¡¡¡¡10nÎªÆæÊý£¬

¡¡¡¡µ±£¬ÎÞ½â

¡¡¡¡20nΪżÊý£¬

¡¡¡¡×ÛÉÏʱ£¬´æÔÚÖ±½ÇÈý½ÇÐÎ


Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º¸ßÖÐÊýѧ×ÛºÏÌâ ÌâÐÍ£º044

ÒÑÖªµãB1(1£¬y1)£¬B2(2£¬y2)£¬¡­£¬Bn(n£¬yn)£¬¡­(n¡ÊN*)˳´ÎΪֱÏßy=x+Éϵĵ㣬µãA1(x1£¬0)£¬A2(x2£¬0)£¬¡­£¬An(xn£¬0)£¬¡­Ë³´ÎΪxÖáÉϵĵ㣬ÆäÖÐx1=a(0£¼a£¼1).¶ÔÓÚÈÎÒân¡ÊN*£¬µãAn£¬Bn£¬An+1¹¹³ÉÒÔBnΪ¶¥µãµÄµÈÑüÈý½ÇÐΣ®

(1)ÇóÊýÁÐ{yn}µÄͨÏʽ£¬²¢Ö¤Ã÷ËüΪµÈ²îÊýÁУ»

(2)ÇóÖ¤£ºxn+2£­xnÊdz£Êý£¬²¢ÇóÊýÁÐ{xn}µÄͨÏʽ£»

(3)ÉÏÊöµÈÑü¡÷AnBnAn+1ÖÐÊÇ·ñ¿ÉÄÜ´æÔÚÖ±½ÇÈý½ÇÐΣ¬Èô¿ÉÄÜ£¬Çó³ö´ËʱaµÄÖµ£»Èô²»¿ÉÄÜ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2007-2008ѧÄêÉϺ£Êмζ¨Ò»ÖеÚһѧÆÚ¸ßÈýÊýѧ²âÊÔ¶þ(ÎÄ) ÌâÐÍ£º044

ÒÑÖªµãB1(1£¬y1)£¬B2(2£¬y2)£¬¡­£¬Bn(n£¬yn)£¬¡­(n¡ÊN)˳´ÎΪֱÏßÉϵĵ㣬µãA1(x1£¬0)£¬A2(x2£¬0)£¬¡­£¬An(xn£¬0)˳´ÎΪxÖáÉϵĵ㣬ÆäÖÐx1£½a(0£¼a£¼1)£®¶ÔÓÚÈÎÒâ×ÔÈ»Êýn£¬µãAn£¬Bn£¬An£«1¹¹³ÉÒÔBnΪ¶¥µãµÄµÈÑüÈý½ÇÐΣ®

(1)ÇóÊýÁÐ{yn}µÄͨÏʽ£¬²¢Ö¤Ã÷ËüΪµÈ²îÊýÁУ»

(2)ÇóÖ¤£ºxn+2£­xnÊdz£Êý£¬²¢ÇóÊýÁÐ{xn}µÄͨÏʽ£»

(3)ÉÏÊöµÈÑü¡÷AnBnAn+1ÖÐÊÇ·ñ¿ÉÄÜ´æÔÚÖ±½ÇÈý½ÇÐΣ¬Èô¿ÉÄÜ£¬Çó³ö´ËʱaµÄÖµ£»Èô²»¿ÉÄÜ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£ºÖØÇìÊÐÍòÖݶþÖÐ2010½ì¸ßÈýÏÂѧÆÚ3ÔÂÔ¿¼ÊýѧÎÄ¿ÆÊÔÌâ ÌâÐÍ£º044

ÒÑÖªµãB1(1£¬y1)£¬B2(2£¬y2)£¬¡­£¬Bn(n£¬yn)£¬¡­(n¡ÊN*)˳´ÎΪֱÏßy£½Éϵĵ㣬µãA1(x1£¬0)£¬A2(x2£¬0)£¬¡­An(xn£¬0)£¬¡­(n¡ÊN*)˳´ÎΪÖáÉϵĵ㣬ÆäÖÐx1£½a(0£¼a£¼1)£¬¶ÔÈÎÒâµÄn¡ÊN*£¬µãAn¡¢Bn¡¢An+1¹¹³ÉÒÔBnΪ¶¥µãµÄµÈÑüÈý½ÇÐΣ®

(¢ñ)Ö¤Ã÷£ºÊýÁÐ{yn}ÊǵȲîÊýÁУ»

(¢ò)ÇóÖ¤£º¶ÔÈÎÒâµÄn¡ÊN*£¬xn+2£­xnÊdz£Êý£¬²¢ÇóÊýÁÐ{xn}µÄͨÏʽ£»

(¢ó)ÔÚÉÏÊöµÈÑüÈý½ÇÐÎAnBnAn+1ÖÐÊÇ·ñ´æÔÚÖ±½ÇÈý½ÇÐΣ¬Èô´æÔÚ£¬Çó³ö´ËʱaµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

(Àí)ÒÑÖªµãB1(1£¬y1),B2(2,y2),B3(3,y3),¡­,Bn(n,yn),¡­(n¡ÊN*)˳´ÎΪijֱÏßlÉϵĵ㣬µãA1(x1,0),A2(x2,0),¡­,An(xn,0)£¬¡­Ë³´ÎΪxÖáÉϵĵ㣬ÆäÖÐx1=a(0£¼a¡Ü1).¶ÔÓÚÈÎÒâµÄn¡ÊN*,¡÷AnBnAn+1ÊÇÒÔBnΪ¶¥µãµÄµÈÑüÈý½ÇÐÎ.

(1)Ö¤Ã÷xn+2-xnÊdz£Êý£¬²¢ÇóÊýÁÐ{xn}µÄͨÏʽ.

(2)ÈôlµÄ·½³ÌΪy=,ÊÔÎÊÔÚ¡÷AnBnAn+1(n¡ÊN*)ÖÐÊÇ·ñ´æÔÚÖ±½ÇÈý½ÇÐÎ?Èô´æÔÚ£¬Çó³öaµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ.

(ÎÄ)ÒÑÖªº¯Êýf(x)=ax3x2+cx+d(a¡¢c¡¢d¡ÊR)Âú×ãf(0)=0,f¡ä(1)=0,ÇÒf¡ä(x)¡Ý0ÔÚRÉϺã³ÉÁ¢.

(1)Çóa¡¢c¡¢dµÄÖµ.

(2)Èôh(x)=x2-bx+,½â²»µÈʽf¡ä(x)+h(x)£¼0.

(3)ÊÇ·ñ´æÔÚʵÊým,ʹº¯Êýg(x)=f¡ä(x)-mxÔÚÇø¼ä£Ûm,m+2£ÝÉÏÓÐ×îСֵ-5?Èô´æÔÚ£¬ÇëÇó³öʵÊýmµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ.

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸