精英家教网 > 高中数学 > 题目详情
21、已知函数f(x)=lnx,g(x)=-ax2+bx,a≠0。

(Ⅰ)若b=2,且h(x)=f(x)-g(x)存在单调递减区间,求a的取值范围;

 

(Ⅱ)设函数f(x)的图象C1与函数g(x)图象C2交于点P、Q,过线段PQ的中点作x轴的垂线分别交C1,C2于点M、N,证明C1在点M处的切线与C2在点N处的切线不平行

21.解:(I)

因为函数h(x)存在单调递减区间,所以<0有解.

又因为x>0时,则ax2+2x-1>0有x>0的解.

①当a>0时,y=ax2+2x-1为开口向上的抛物线,ax2+2x-1>0总有x>0的解;

②当a<0时,y=ax2+2x-1为开口向下的抛物线,而ax2+2x-1>0有x>0的解;

则△=4+4a>0,且方程ax2+2x-1=0至少有一正根.此时,-1<a<0.

综上所述,a的取值范围为(-1,0)∪(0,+∞).

    (II)证法一  设点P、Q的坐标分别是(x1, y1),(x2, y2),0<x1<x2.

     则点M、N的横坐标为

     C1在点M处的切线斜率为

     C2在点N处的切线斜率为

     假设C1在点M处的切线与C2在点N处的切线平行,则k1=k2.

     即,则

              =

       所以 

       令

       因为时,,所以)上单调递增. 故

       则. 这与①矛盾,假设不成立.

       故C1在点M处的切线与C2在点N处的切线不平行.

证法二:同证法一得

       因为,所以

       令,得  ②

       令

       因为,所以时,

       故在[1,+上单调递增.从而,即

       于是在[1,+上单调递增.

       故这与②矛盾,假设不成立.

       故C1在点M处的切线与C2在点N处的切线不平行.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax2-2x+1,g(x)=ln(x+1).

(1)求函数y=g(x)-x在[0,1]上的最小值;

(2)当a≥时,函数t(x)=f(x)+g(x)的图像记为曲线C,曲线C在点(0,1)处的切线为l,是否存在a使l与曲线C有且仅有一个公共点?若存在,求出所有a的值;否则,说明理由.

(3)当x≥0时,g(x)≥-f(x)+恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2014届湖北省大治二中高二3月联考文科数学试卷(解析版) 题型:解答题

已知函数f(x)=x3+x-16,

(1)求曲线y=f(x)在点(2,-6)处的切线的方程;

(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标;

 

查看答案和解析>>

科目:高中数学 来源:2012年陕西省高二下期第一次月考理科数学试卷(解析版) 题型:解答题

已知函数f(x)=x3-3x及y=f(x)上一点P(1,-2),过点P作直线l.

(1)求使直线l和y=f(x)相切且以P为切点的直线方程;

(2)求使直线l和y=f(x)相切且切点异于P的直线方程.

 

查看答案和解析>>

科目:高中数学 来源:新课标高三数学导数专项训练(河北) 题型:解答题

已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在x=1处的切线为l:3x-y+1=0,当x=时,y=f(x)有极值.

(1)求a、b、c的值;

(2)求y=f(x)在[-3,1]上的最大值和最小值.

 

查看答案和解析>>

科目:高中数学 来源:新课标高三数学导数专项训练(河北) 题型:解答题

已知函数f(x)=x3-2x2+ax(x∈R,a∈R),在曲线y=f(x)的所有切线中,有且仅有一条切线l与直线y=x垂直.

(1)求a的值和切线l的方程;

(2)设曲线y=f(x)上任一点处的切线的倾斜角为θ,求θ的取值范围

 

查看答案和解析>>

同步练习册答案