【题目】已知函数f(x)=x22(a+2)x+a2,g(x)=x2+2(a2)xa2+8.设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max{p,q}表示p,q中的较大值,min{p,q}表示p,q中的较小值).记H1(x)的最小值为A,H2(x)的最大值为B,则AB=( )
A.a22a16B.a2+2a16
C.16D.16
科目:高中数学 来源: 题型:
【题目】采购经理指数(PMⅠ)是衡量一个国家制造业的“体检表”,是衡量制造业在生产、新订单、商品价格、存货、雇员、订单交货新出口订单和进口等八个方面状况的指数,图为2018年9月—2019年9月我国制造业的采购经理指数(单位:%).
![]()
(1)求2019年前9个月我国制造业的采购经理指数的平均数(精确到0.1);
(2)从2018年10月—2019年9月这12个月任意选取4个月,记采购经理指数与上个月相比有所回升的月份个数为X,求X的分布列与期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,直线
的参数方程为
(
为参数),直线
的参数方程为
(
为参数).设
与
的交点为
,当
变化时,
的轨迹为曲线
.
(1)求
的普通方程;
(2)设
为圆
上任意一点,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以平面直角坐标系的原点
为极点,
轴的正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
,将曲线
绕极点逆时针旋转
后得到曲线
.
(Ⅰ)求曲线
的极坐标方程;
(Ⅱ)若直线
:
与
,
分别相交于异于极点的
,
两点,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题共l4分)
已知函数f(x)=
x +
, h(x)=
.
(I)设函数F(x)=f(x)一h(x),求F(x)的单调区间与极值;
(Ⅱ)设a∈R,解关于x的方程log4[
]=1og2h(a-x)一log2h (4-x);
(Ⅲ)试比较
与
的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】谢宾斯基三角形是一种分形,由波兰数学家谢宾斯基在1915年提出,先作一个正三角形挖去一个“中心三角形”(即以原三角形各边的中点为顶点的三角形),然后在剩下的小三角形中又挖去一个“中心三角形”,我们用白色代表挖去的面积,那么黑三角形为剩下的面积(我们称黑三角形为谢宾斯基三角形).向图中第4个大正三角形中随机撒512粒大小均匀的细小颗粒物,则落在白色区域的细小颗粒物的数量约是( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com