精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和为Sn,a1=1,数列{an+Sn}是公差为2的等差数列.
(Ⅰ)求a2,a3
(Ⅱ)证明数列{an-2}为等比数列;
(Ⅲ)求数列{nan}的前n项和Tn
分析:(Ⅰ)由数列{an+Sn}是公差为2的等差数列,可得an+sn=2n,代入求a2,a3
(Ⅱ)利用递推公式an=
sn-sn-1,n≥2
s1       n=1
代换sn,证明
an-2
an-1-2
为一非零常数
(Ⅲ)用错位相减求数列的前n项和
解答:(Ⅰ)解:∵数列{an+Sn}是公差为2的等差数列,
∴(an+1+Sn+1)-(an+Sn)=2,即an+1=
an+2
2
,(3分)
∵a1=1,∴a2=
3
2
 a3=
7
4
;(5分)
(Ⅱ)证明:由题意,得a1-2=-1,∵
an+1-2
an-2
=
an+2
2
-2
an-2
=
1
2

∴{an-2}是首项为-1,公比为
1
2
的等比数列;(9分)
(Ⅲ)解:由(Ⅱ)得an-2=-(
1
2
)n-1
,∴nan=2n-n•(
1
2
)n-1
,(10分)
Tn=(2-1)+(4-2•
1
2
)+[6-3•(
1
2
)2]++[2n-n•(
1
2
)n-1]

Tn=(2+4+6++2n)-[1+2•
1
2
+3•(
1
2
)2++n•(
1
2
)n-1]

An=1+2•
1
2
+3•(
1
2
)2++n•(
1
2
)n-1

1
2
An=
1
2
+2•(
1
2
)2+3•(
1
2
)3++n•(
1
2
)n
,②
由①-②,得
1
2
An=1+
1
2
+(
1
2
)2++(
1
2
)n-1-n•(
1
2
)n

1
2
An=
1-(
1
2
)
n
1-
1
2
-n•(
1
2
)n
,∴An=4-(n+2)•(
1
2
)n-1

Tn=
n(2+2n)
2
+(n+2)•(
1
2
)n-1-4=(n+2)•(
1
2
)n-1+n(n+1)-4
.(14分)
点评:本题综合考查了利用递推公式求通项、采用构造证明等比数列及运用错位相减求数列的和.熟练掌握公式,灵活转化是解题的关键,还要具备综合论证推理的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案