【题目】如图,已知正四棱锥P﹣ABCD中,PA=AB=2,点M,N分别在PA,BD上,且
=
. ![]()
(1)求异面直线MN与PC所成角的大小;
(2)求二面角N﹣PC﹣B的余弦值.
【答案】
(1)解:设AC与BD的交点为O,AB=PA=2.以点O为坐标原点,
,
,
方向分别是x轴、y轴、z轴正方向,建立空间直角坐标系O﹣xyz.
![]()
则A(1,﹣1,0),B(1,1,0),C(﹣1,1,0),D(﹣1,﹣1,0),…(2分)
设P(0,0,p),则
=(﹣1,1,p),又AP=2,
∴1+1+p2=4,∴p=
,
∵
=
=
=(
),
=(
),
∴
=(﹣1,1,﹣
),
=(0,
,﹣
),
设异面直线MN与PC所成角为θ,
则cosθ=
=
=
.
θ=30°,
∴异面直线MN与PC所成角为30°
(2)解:
=(﹣1,1,﹣
),
=(1,1,﹣
),
=(
,
,﹣
),
设平面PBC的法向量
=(x,y,z),
则
,取z=1,得
=(0,
,1),
设平面PNC的法向量
=(a,b,c),
则
,取c=1,得
=(
,2
,1),
设二面角N﹣PC﹣B的平面角为θ,
则cosθ=
=
=
.
∴二面角N﹣PC﹣B的余弦值为
.
【解析】(1)设AC与BD的交点为O,AB=PA=2.以点O为坐标原点,
,
,
方向分别是x轴、y轴、z轴正方向,建立空间直角坐标系O﹣xyz.利用向量法能求出异面直线MN与PC所成角.(2)求出平面PBC的法向量和平面PNC的法向量,利用向量法能求出二面角N﹣PC﹣B的余弦值.
科目:高中数学 来源: 题型:
【题目】在四棱锥
中,底面
为菱形,侧面
为等边三角形,且侧面
底面
,
,
分别为
,
的中点.
(Ⅰ)求证:
.
(Ⅱ)求证:平面
平面
.
(Ⅲ)侧棱
上是否存在点
,使得
平面
?若存在,求出
的值;若不存在,请说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列
的前
项和为
,
,
.
(1)求数列
的通项公式;
(2)设数列
满足:
对于任意
,都有
成立.
①求数列
的通项公式;
②设数列
,问:数列
中是否存在三项,使得它们构成等差数列?若存在,求出这三项;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆O1和圆O2的极坐标方程分别为ρ=2,
.
(1)把圆O1和圆O2的极坐标方程化为直角坐标方程;
(2)求经过两圆交点的直线的极坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC的中点,F在棱AC上,且AF=3FC
(1)求三棱锥D-ABC的体积
(2)求证:平面DAC⊥平面DEF;
(3)若M为DB中点,N在棱AC上,且CN=
CA,求证:MN∥平面DEF
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过点
的直线与圆
相切,且与直线
垂直,则
( )
A. 2 B. 1 C.
D. ![]()
【答案】A
【解析】因为点P(2,2)满足圆
的方程,所以P在圆上,
又过点P(2,2)的直线与圆
相切,且与直线axy+1=0垂直,
所以切点与圆心连线与直线axy+1=0平行,
所以直线axy+1=0的斜率为:
.
故选A.
点睛:对于直线和圆的位置关系的问题,可用“代数法”或“几何法”求解,直线与圆的位置关系体现了圆的几何性质和代数方法的结合,“代数法”与“几何法”是从不同的方面和思路来判断的,解题时不要单纯依靠代数计算,若选用几何法可使得解题过程既简单又不容易出错.
【题型】单选题
【结束】
23
【题目】设
分别是双曲线
的左、右焦点.若点
在双曲线上,且
,则
( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若平面点集
满足:任意点
,存在
,都有
,则称该点集
是“
阶聚合”点集。现有四个命题:
①若
,则存在正数
,使得
是“
阶聚合”点集;
②若
,则
是“
阶聚合”点集;
③若
,则
是“2阶聚合”点集;
④若
是“
阶聚合”点集,则
的取值范围是
.
其中正确命题的序号为( )
A. ①④ B. ②③ C. ①② D. ③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com