【题目】已知动点
到定点
的距离比
到定直线
的距离小1.
(Ⅰ)求点
的轨迹
的方程;
(Ⅱ)过点
任意作互相垂直的两条直线
,分别交曲线
于点
和
.设线段
,
的中点分别为
,求证:直线
恒过一个定点;
(Ⅲ)在(Ⅱ)的条件下,求
面积的最小值.
【答案】(1)
(2)过定点
,(3)4
【解析】试题分析:(Ⅰ)先借助抛物线定义确定曲线的形状是抛物线,再确定参数
,进而求出
;(Ⅱ)先依据(Ⅰ)的结论分别建立
的方程,再分别与抛物线联立方程组,求出弦中点为
的坐标,最后借助斜率的变化确定直线
经过定点;(Ⅲ)在(Ⅱ)前提条件下,先求出
,然后建立
面积关于变量
的函数
,再运用基本不等式求其最小值:
解:(Ⅰ)由题意可知:动点
到定点
的距离等于
到定直线
的距离.根据抛物线的定义可知,点
的轨迹
是抛物线.
∵
,∴抛物线方程为: ![]()
(Ⅱ)设
两点坐标分别为
,则点
的坐标为
.
由题意可设直线
的方程为
.
由
,得
.
.
因为直线
与曲线
于
两点,所以
.
所以点
的坐标为
.
由题知,直线
的斜率为
,同理可得点
的坐标为
.
当
时,有
,此时直线
的斜率
.
所以,直线
的方程为
,整理得
.
于是,直线
恒过定点
;
当
时,直线
的方程为
,也过点
.
综上所述,直线
恒过定点
.
(Ⅲ)可求得
.所以
面积
.
当且仅当
时,“
”成立,所以
面积的最小值为4.
科目:高中数学 来源: 题型:
【题目】已知集合A=[2,log2t],集合B={x|y=
},
(1)对于区间[a,b],定义此区间的“长度”为b﹣a,若A的区间“长度”为3,试求实数t的值.
(2)若AB,试求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题错误的是( )
A.命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x2﹣3x+2≠0”
B.若p∧q为假命题,则p,q均为假命题
C.对命题P:存在x∈R,使得x2+x+1<0,则¬p为:任意x∈R,均有x2+x+1≥0
D.“x>2”是“x2﹣3x+2>0”的充分不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题满分12分)如图13,四棱锥P ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.
(1)证明:PB∥平面AEC;
(2)设AP=1,AD=
,三棱锥P ABD的体积V=
,求A到平面PBC的距离.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题满分12分) 已知集合
在平面直角坐标系中,点M的坐标为(x,y) ,其中
。
(1)求点M不在x轴上的概率;
(2)求点M正好落在区域
上的概率。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出了500件,量其内径尺寸,得结果如下表:
甲厂:
分组 | [29.86,29.90) | [29.90,29.94) | [29.94,29.98) | [29.98,30.02) | [30.02,30.06) | [30.06,30.10) | [30.10,30.14) |
频数 | 12 | 63 | 86 | 182 | 92 | 61 | 4 |
乙厂:
分组 | [29.86,29.90) | [29.90,29.94) | [29.94,29.98) | [29.98,30.02) | [30.02,30.06) | [30.06,30.10) | [30.10,30.14) |
频数 | 29 | 71 | 85 | 159 | 76 | 62 | 18 |
(1)试分别估计两个分厂生产的零件的优质品率;
(2)由以上统计数据填下面
列联表,并问是否有
的把握认为“两个分厂生产的零件的质量有差异”.
甲 厂 | 乙 厂 | 合计 | |
优质品 | |||
非优质品 | |||
合计 |
附: ![]()
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出三种函数模型:f(x)=xn(n>0),g(x)=ax(a>1)和h(x)=logax(a>1).根据它们增长的快慢,则一定存在正实数x0 , 当x>x0时,就有( )
A.f(x)>g(x)>h(x)
B.h(x)>g(x)>f(x)
C.f(x)>h(x)>g(x)
D.g(x)>f(x)>h(x)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com