精英家教网 > 高中数学 > 题目详情

【题目】设函数,其中.恒成立,则当取得最小值时,的值为________.

【答案】

【解析】

构造函数,可知函数的图象关于点对称,然后分三种情况进行讨论,分析函数在区间上的单调性,得出函数在区间上最值的可能取值,利用绝对值三角不等式可求出当取得最小值时的值.

令函数,则

因为

所以函数的图象关于点对称,且

所以当时,,所以函数上单调递增,

所以,两式相加可得,

此时,当时,取得最小值

时,对任意的,所以函数上单调递减,

所以,两式相加可得,

此时当时,取得最小值

时,令,得,令,列表如下:

极大值

极小值

不妨设,则,则

所以

因为,且,所以

因为,若,则

,则,但

因为

所以

时,

当且仅当时,即当时,取得最小值

时,

综上所述,当当时,取得最小值,此时.

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到,任画一条线段,然后把它均分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了4条小线段构成的折线,称为“一次构造”;用同样的方法把每条小线段重复上述步骤,得到16条更小的线段构成的折线,称为“二次构造”,…,如此进行“次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度达到初始线段的1000倍,则至少需要通过构造的次数是( .(取

A.16B.17C.24D.25

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点,且离心率为,过其右焦点F的直线交椭圆CMN两点,交y轴于E点.若

(Ⅰ)求椭圆C的标准方程;

(Ⅱ)试判断是否是定值.若是定值,求出该定值;若不是定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,证明:

2)若只有一个零点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】魏晋时期数学家刘徽在他的著作《九章算术注》中,称一个正方体内两个互相垂直的内切圆柱所围成的几何体为牟合方盖(如图所示),刘徽通过计算得知正方体的内切球的体积与牟合方盖的体积之比应为.若牟合方盖的体积为,则正方体的外接球的表面积为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极坐标系的极点为直角坐标系xOy的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,圆C的直角坐标方程为,直线l的参数方程为(t为参数),射线OM的极坐标方程为.

1)求圆C和直线l的极坐标方程;

2)已知射线OM与圆C的交点为OP,与直线l的交点为Q,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校在高二年级开设选修课,选课结束后,有6名同学要求改选历史,现历史选修课开有三个班,若每个班至多可再接收3名同学,那么不同的接收方案共有(

A.150B.360C.510D.512

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线l的参数方程为t为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为

1)求直线l的普通方程和曲线C的直角坐标方程;

2)若直线l与曲线C相交于AB两点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】南北朝时代的伟大数学家祖暅在数学上有突出贡献,他在实践的基础上提出祖暅原理:幂势既同,则积不容异”.其含义是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等,如图,夹在两个平行平面之间的两个几何体的体积分别为,被平行于这两个平面的任意平面截得的两个截面的面积分别为,则总相等相等的(

A.充分不必要条件B.必要不充分条件

C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案