【题目】已知函数
.
(I)已知函数
在点
处的切线与直线
垂直,求
的值;
(Ⅱ)若函数
在
上无零点,求
的取值范围.
【答案】(Ⅰ)
(Ⅱ)![]()
【解析】
(I)求出
,然后由条件建立方程求解即可;
(Ⅱ)求出
,然后分
、
、
、
四种情况讨论,每种情况下求出
在
上的单调性,然后结合其最值求解即可.
(I)由题意可得
,∴
,
又因为函数
在点
处的切线与直线
垂直,
所以
,∴
.
(Ⅱ)由题意可知
,
当
时,
,所以,
在
上单调递减,
即
在
上单调递减.又因为
,
所以
在
上无零点.即
满足条件.
当
时,令
得
,
(舍),
当
时,
;当
时,
.
∴
在
上单调递增,在
上单调递减.
当
,即
时,
在
上单调递减,有
,
此时
在
上无零点,即
时满足条件.
当
,即
时,
在
上单调递增,在
上单调递减,
当且仅当
且
时,
在
上无零点,
解得
.
当
,即
时,
在
上单调递增,
当且仅当
且
时,
在
上无零点,此时无解.
综上所得:![]()
科目:高中数学 来源: 题型:
【题目】如图所示,正四棱椎P-ABCD中,底面ABCD的边长为2,侧棱长为
.
![]()
(I)若点E为PD上的点,且PB∥平面EAC.试确定E点的位置;
(Ⅱ)在(I)的条件下,点F为线段PA上的一点且
,若平面AEC和平面BDF所成的锐二面角的余弦值为
,求实数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了
位育龄妇女,结果如表.
非一线 | 一线 | 总计 | |
愿生 |
|
|
|
不愿生 |
|
|
|
总计 |
|
|
|
附表:
|
|
|
|
|
|
|
|
由
算得,
参照附表,得到的正确结论是( )
A. 在犯错误的概率不超过
的前提下,认为“生育意愿与城市级别有关”
B. 有
以上的把握认为“生育意愿与城市级别有关”
C. 在犯错误的概率不超过
的前提下,认为“生育意愿与城市级别无关”
D. 有
以上的把握认为“生育意愿与城市级别无关”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年“双十一”期间,某商场举办了一次有奖促销活动,顾客消费每满1000元可参加一次抽奖(例如:顾客甲消费930元,不得参与抽奖;顾客乙消费3400元,可以抽奖三次)。如图1,在圆盘上绘制了标有A,B,C,D的八个扇形区域,每次抽奖时由顾客按动按钮使指针旋转一次,旋转结束时指针会随机停在圆盘上的某一个位置,顾客获奖的奖次由指针所指区域决定(指针与区域边界线粗细忽略不计)。商家规定:指针停在标A,B,C,D的扇形区域分别对应的奖金为200元、150元、100元和50元。已知标有A,B,C,D的扇形区域的圆心角成等差数列,且标D的扇形区域的圆心角是标A的扇形区域的圆心角的4倍.
![]()
(I)某顾客只抽奖一次,设该顾客抽奖所获得的奖金数为X元,求X的分布列和数学期望;
(II)如图2,该商场统计了活动期间一天的顾客消费情况.现按照消费金额分层抽样选出15位顾客代表,其中获得奖金总数不足100元的顾客代表有7位.现从这7位顾客代表中随机选取两位,求这两位顾客的奖金总数和仍不足100元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2011年,国际数学协会正式宣布,将每年的3月14日设为“国际数学节”,其来源是中国古代数学家祖冲之的圆周率,为庆祝该节日,某校举办的“数学嘉年华”活动中,设计了如下的有奖闯关游戏:参赛选手按第一关、第二关、第三关的顺序依次闯关,若闯关成功,则分别获得5个、10个、20个学豆的奖励.游戏还规定:当选手闯过一关后,可以选择带走相应的学豆,结束游戏;也可以选择继续闯下一关,若有任何一关没有闯关成功,则全部学豆归零,游戏结束.设选手甲能闯过第一关、第二关、第三关的概率分别为
,选手选择继续闯关的概率均为
,且各关之间闯关成功与否互不影响.
(1)求选手甲第一关闯关成功且所得学豆为零的概率;
(2)设该选手所得学豆总数为
,求
的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:
支付方式 | 不大于2000元 | 大于2000元 |
仅使用A | 27人 | 3人 |
仅使用B | 24人 | 1人 |
(Ⅰ)估计该校学生中上个月A,B两种支付方式都使用的人数;
(Ⅱ)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;
(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(Ⅱ)的结果,能否认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】圆锥
(其中
为顶点,
为底面圆心)的侧面积与底面积的比是
,则圆锥
与它外接球(即顶点在球面上且底面圆周也在球面上)的体积比为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
的图像相邻两条对称轴间的距离为
,且
,则以下命题中为假命题的是( )
A.函数
在
上是增函数.
B.函数
图像关于点
对称
C.函数
的图象可由
的图象向左平移
个单位长度得到
D.函数
的图象关于直线
对称
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某超市春节大酬宾,购物满100元可参加一次抽奖活动,规则如下:顾客将一个半径适当的小球放入如图所示的容器正上方的人口处,小球在自由落下的过程中,将3次遇到黑色障碍物,最后落入A袋或B袋中,顾客相应获得袋子里的奖品.已知小球每次遇到黑色障碍物时,向左向右下落的概率都为
.若活动当天小明在该超市购物消费108元,按照活动规则,他可参加一次抽奖,则小明获得A袋中的奖品的概率为_____.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com