(本小题满分12分)如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,
,E,F分别是BC, PC的中点.
(1)证明:AE⊥PD;
(2)若H为PD上的动点,EH与平面PAD所成最大角的正切值为
,求二面角E—AF—C的余弦值.
(1)略
(2)![]()
【解析】(Ⅰ)证明:由四边形ABCD为菱形,∠ABC=60°,可得△ABC为正三角形.
因为 E为BC的中点,所以AE⊥BC.
又 BC∥AD,因此AE⊥AD.
因为PA⊥平面ABCD,AE
平面ABCD,所以PA⊥AE.
而
PA
平面PAD,AD
平面PAD 且PA∩AD=A,
所以
AE⊥平面PAD,又PD
平面PAD.
所以 AE⊥PD………4分
(Ⅱ)解:设AB=2,H为PD上任意一点,连接AH,EH.
由(Ⅰ)知 AE⊥平面PAD,
则∠EHA为EH与平面PAD所成的角.
在Rt△EAH中,AE=
,
所以 当AH最短时,∠EHA最大,
即 当AH⊥PD时,∠EHA最大.
此时
tan∠EHA=![]()
因此
AH=
.又AD=2,所以∠ADH=45°,
所以 PA=2………6分
解法一:因为
PA⊥平面ABCD,PA
平面PAC,
所以 平面PAC⊥平面ABCD.
过E作EO⊥AC于O,则EO⊥平面PAC,
过O作OS⊥AF于S,连接ES,则∠ESO为二面角E-AF-C的平面角,
在Rt△AOE中,EO=AE·sin30°=
,AO=AE·cos30°=
,
又F是PC的中点,在Rt△ASO中,SO=AO·sin45°=
,
又 ![]()
![]()
在Rt△ESO中,cos∠ESO=![]()
即所求二面角的余弦值为
……12分
解法二:由(Ⅰ)知AE,AD,AP两两垂直,以A为坐标原点,建立如图所示的空间直角坐标系,又E、F分别为BC、PC的中点,所以
E、F分别为BC、PC的中点,所以
A(0,0,0),B(
,-1,0),C(C,1,0),
D(0,2,0),P(0,0,2),E(
,0,0),F(
),
所以
![]()
设平面AEF的一法向量为
因此![]()
因为 BD⊥AC,BD⊥PA,PA∩AC=A,
所以 BD⊥平面AFC,
故
为平面AFC的一法向量.
又
=(
),
因为 二面角E-AF-C为锐角,
所以所求二面角的余弦值为![]()
……12分
科目:高中数学 来源: 题型:
| ON |
| ON |
| 5 |
| OM |
| OT |
| M1M |
| N1N |
| OP |
| OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的
、
、
.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
![]()
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com