精英家教网 > 高中数学 > 题目详情

已知中心在原点的椭圆与双曲线有公共焦点,左、右焦点分别为,且两条曲线在第一象限的交点为是以为底边的等腰三角形,若,椭圆与双曲线的离心率分别为,则的取值范围是(   )

A.(1,)       B.()     C.()      D.(,+

 

【答案】

B

【解析】

试题分析:设椭圆与双曲线的半焦距为c,PF1=r1,PF2=r2

由题意知r1=10,r2=2c,且r1>r2,2r2>r1,∴2c<10,2c+2c>10,<c<5,

∴e2==

e1=

=+1==>,故选B。

考点:本题主要考查椭圆、双曲线的几何性质,不等式的性质。

点评:中档题,首先结合图形分析,确定得到几何量之间的关系,进一步确定c的范围。确定的范围过程中,利用了不等式的性质。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知中心在原点的椭圆的一个焦点为(0,
2
),且过点A(1,
2
)
,过A作倾斜角互补的两条直线,它们与椭圆的另一个交点分别为点B和点C.
(1)求椭圆的标准方程;
(2)求证:直线BC的斜率为定值,并求这个定值.
(3)求三角形ABC的面积最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知中心在原点的椭圆C的一个焦点F(4,0),长轴端点到较近焦点的距离为1,A(x1,y1),B(x2,y2)(x1≠x2)为椭圆上不同的两点.
(1)求椭圆的方程;
(2)若x1+x2=8,在x轴上是否存在一点D,使|
DA
|=|
DB
|若存在,求出D点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广东)已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于
1
2
,则C的方程是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知中心在原点的椭圆C:
x2
a2
+
y2
b2
=1的焦点为F1(0,3),M(x,4)(x>0)椭圆C上一点,△MOF1的面积为
3
2

(1)求椭圆C的方程.
(2)是否存在平行于OM的直线l,使得直线l与椭圆C相较于A,B两点,且以线段AB为直径的圆恰好经过原点?若存在,求出直线l的方程,请说明理由..

查看答案和解析>>

科目:高中数学 来源: 题型:

已知中心在原点的椭圆C的右焦点为F(
15
,0),直线y=x与椭圆的一个交点的横坐标为2,则椭圆方程为(  )
A、
x2
16
+y2=1
B、x2+
y2
16
=1
C、
x2
20
+
y2
5
=1
D、
x2
5
+
y2
20
=1

查看答案和解析>>

同步练习册答案