【题目】已知函数
,其中
为实常数.
(1)若存在
,使得
在区间
内单调递减,求
的取值范围;
(2)当
时,设直线
与函数
的图象相交于不同的两点
,
,证明:
.
科目:高中数学 来源: 题型:
【题目】某湿地公园内有一条河,现打算建一座桥将河两岸的路连接起来,剖面设计图纸如下:
![]()
其中,点
为
轴上关于原点对称的两点,曲线段
是桥的主体,
为桥顶,且曲线段
在图纸上的图形对应函数的解析式为
,曲线段
均为开口向上的抛物线段,且
分别为两抛物线的顶点,设计时要求:保持两曲线在各衔接处(
)的切线的斜率相等.
(1)求曲线段
在图纸上对应函数的解析式,并写出定义域;
(2)车辆从
经
倒
爬坡,定义车辆上桥过程中某点
所需要的爬坡能力为:
(该点
与桥顶间的水平距离)
(设计图纸上该点处的切线的斜率),其中
的单位:米.若该景区可提供三种类型的观光车:①游客踏乘;②蓄电池动力;③内燃机动力.它们的爬坡能力分别为
米,
米,
米,又已知图纸上一个单位长度表示实际长度
米,试问三种类型的观光车是否都可以顺利过桥?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
的的参数方程为
(其中
为参数),以坐标原点
为极点,
轴的正半轴为极轴的极坐标系中,点
的极坐标为
,直线
经过点
.曲线
的极坐标方程为
.
(1)求直线
的普通方程与曲线
的直角坐标方程;
(2)过点
作直线
的垂线交曲线
于
两点(
在
轴上方),求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某搜索引擎广告按照付费价格对搜索结果进行排名,点击一次付费价格排名越靠前,被点击的次数也可能会提高,已知某关键词被甲、乙等多个公司竞争,其中甲、乙付费情况与每小时点击量结果绘制成如下的折线图.
![]()
(1)若甲公司计划从这10次竞价中随机抽取3次竞价进行调研,其中每小时点击次数超过7次的竞价抽取次数记为
,求
的分布列与数学期望;
(2)若把乙公司设置的每次点击价格为x,每小时点击次数为
,则点
近似在一条直线附近.试根据前5次价格与每小时点击次数的关系,求y关于x的回归直线
.(附:回归方程系数公式:![]()
).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为研究学生语言学科的学习情况,现对高二200名学生英语和语文某次考试成绩进行抽样分析. 将200名学生编号为001,002,…,200,采用系统抽样的方法等距抽取10名学生,将10名学生的两科成绩(单位:分)绘成折线图如下:
![]()
(Ⅰ)若第一段抽取的学生编号是006,写出第五段抽取的学生编号;
(Ⅱ)在这两科成绩差超过20分的学生中随机抽取2人进行访谈,求2人成绩均是语文成绩高于英语成绩的概率;
(Ⅲ)根据折线图,比较该校高二年级学生的语文和英语两科成绩,写出你的结论和理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E:
,直线l不过原点O且不平行于坐标轴,l与E有两个交点A,B,线段AB的中点为M.
若
,点K在椭圆E上,
、
分别为椭圆的两个焦点,求
的范围;
证明:直线OM的斜率与l的斜率的乘积为定值;
若l过点
,射线OM与椭圆E交于点P,四边形OAPB能否为平行四边形?若能,求此时直线l斜率;若不能,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,点
在椭圆上.
(1)求椭圆的方程;
(2)过椭圆的右焦点
作互相垂直的两条直线
、
,其中直线
交椭圆于
两点,直线
交直线
于
点,求证:直线
平分线段
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
过点
,该抛物线的准线与椭圆
:
相切,且椭圆的离心率为
,点
为椭圆
的右焦点.
(1)求椭圆
的标准方程;
(2)过点
的直线
与椭圆
交于![]()
两点,
为平面上一定点,且满足
,求直线
的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com