精英家教网 > 高中数学 > 题目详情

【题目】若奇函数在区间[3,7]上递增且最小值为5,则f(x)在[﹣7,﹣3]上为(
A.递增且最小值为﹣5
B.递增且最大值为﹣5
C.递减且最小值为﹣5
D.递减且最大值为﹣5

【答案】B
【解析】解:因为奇函数f(x)在区间[3,7]上是增函数,
所以f(x)在区间[﹣7,﹣3]上也是增函数,
且奇函数f(x)在区间[3,7]上有f(x)min=f(3)=5,
则f(x)在区间[﹣7,﹣3]上有f(x)max=f(﹣3)=﹣f(3)=﹣5,
故选:B.
【考点精析】通过灵活运用函数奇偶性的性质,掌握在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设全集U={1,2,3,4,5,6},设集合P={1,2,3,4},Q={3,4,5},则P∩(UQ)=(
A.{1,2,3,4,6}
B.{1,2,3,4,5}
C.{1,2,5}
D.{1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】演绎推理“因为指数函数y=ax(a>0且a≠1)是增函数,而y=2x是指数函数,所以y=2x是增函数”,所得结论错误的原因是(
A.推理形式错误
B.小前提错误
C.大前提错误
D.小前提、大前提都错误

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】观察下列事实:|x|+|y|=1的不同整数解(x,y)有4个,|x|+|y|=2的不同整数解(x,y)有8个,|x|+|y|=3的不同整数解(x,y)有12个,…,则|x|+|y|=15的不同整数解(x,y)的个数为(
A.64
B.60
C.56
D.52

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,可以是奇函数的为(
A.f(x)=(x﹣a)|x|,a∈R
B.f(x)=x2+ax+1,a∈R
C.f(x)=log2(ax﹣1),a∈R
D.f(x)=ax+cosx,a∈R

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】动点P从正方体ABCD﹣A1B1C1D1的顶点A出发,沿着棱运动到顶点C1后再到A,若运动中恰好经过6条不同的棱,称该路线为“最佳路线”,则“最佳路线”的条数为(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“|x+1|+|x﹣2|≤5”是“﹣2≤x≤3”的(
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从重量分别为1,2,3,4,…,10,11克的砝码(每种砝码各一个)中选出若干个,使其总重量恰为9克的方法总数为m,下列各式的展开式中x9的系数为m的选项是(
A.(1+x)(1+x2)(1+x3)…(1+x11
B.(1+x)(1+2x)(1+3x)…(1+11x)
C.(1+x)(1+2x2)(1+3x3)…(1+11x11
D.(1+x)(1+x+x2)(1+x+x2+x3)…(1+x+x2+…+x11

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知奇函数f(x)是定义在(﹣1,1)上的减函数,且f(1﹣t)+f(1﹣t2)<0,则 t的取值范围是

查看答案和解析>>

同步练习册答案