精英家教网 > 高中数学 > 题目详情
精英家教网菱形ABCD的边长为
2
3
3
,∠ABC=60°,沿对角线AC折成如图所示的四面体,M为AC的中点,∠BMD=60°,P在线段DM上,记DP=x,PA+PB=y,则函数y=f(x)的图象大致为(  )
A、精英家教网
B、精英家教网
C、精英家教网
D、精英家教网
分析:根据菱形的性质,利用余弦定理和勾股定理分别求出PA,PB,然后建立函数关系,根据函数关系确定函数图象.
解答:解:∵DP=x,∴MP=1-x,
∵菱形ABCD的边长为
2
3
3
,∠ABC=60°,
∴AM=
1
2
AB
=
3
3
,BM=MD=1,
在直角三角形AMP中,PA=
AM2+MP2
=
1
3
+(1-x)2
=
1
3
+(x-1)2

在三角形BMP中由余弦定理可得PB=
BM2+MP2-2BM?MPcos?600
=
1+(1-x)2-(1-x)
=
x2-x+1

∴y=PA+PB=
1
3
+(x-1)2
+
x2-x+1
=
1
3
+(x-1)2
+
(x-
1
2
)
2
+
3
4

∵当0≤x≤
1
2
时,函数y单调递减,
当x≥1时,函数y单调递增,∴对应的图象为D,
故选 D.
点评:本题主要考查函数图象的识别和判断,根据直角三角形的勾股定理和三角形的余弦定理分别求出PA,PB的值是解决本题的关键,本题综合性较强,难度较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,菱形ABCD的边长为1,∠ABC=60°,E、F分别为AD、CD的中点,则
BE
BF
=
 

精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•西城区二模)如图,菱形ABCD的边长为6,∠BAD=60°,AC∩BD=O.将菱形ABCD沿对角线AC折起,得到三棱锥B-ACD,点M是棱BC的中点,DM=3
2

(Ⅰ)求证:OM∥平面ABD;
(Ⅱ)求证:平面ABC⊥平面MDO;
(Ⅲ)求三棱锥M-ABD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•威海二模)如图,菱形ABCD的边长为2,∠A=60°,M为DC的中点,若N为菱形内任意一点(含边界),则
AM
AN
的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,菱形ABCD的边长为6,∠BAD=60°,AC∩BD=O.将菱形ABCD沿对角线AC折起,得到三棱锥B-ACD,点M是棱BC的中点,DM=3
2


(1)求证:OM∥平面ABD;
(2)求证:平面ABC⊥平面MDO;
(3)求三棱锥D-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知菱形ABCD的边长为10,∠ABC=60°,将这个菱形沿对角线BD折成120°的二面角,则A、C两点的距离是(  )

查看答案和解析>>

同步练习册答案