精英家教网 > 高中数学 > 题目详情

三棱柱中,侧棱与底面垂直,分别是的中点.

(Ⅰ)求证:平面

(Ⅱ)求证:平面

(Ⅲ)求三棱锥的体积.

 

【答案】

(1)、(2)见解析;(3).

【解析】判断或证明线面平行的常用方法有:①利用线面平行的定义(无公共点);②利用线面平行的判定定理(a⊂α,b⊄α,a∥b⇒a∥α);③利用面面平行的性质定理(α∥β,a⊂α⇒a∥β);④利用面面平行的性质(α∥β,a⊄α, a∥α⇒?a∥β).

解:⑴连结

的中点∴

又∵平面,∴平面      --------------------4分

⑵∵三棱柱中,侧棱与底面垂直,

∴四边形是正方形.∴

.连结

,又的中点,∴

相交于点,∴平面.      --------------9分

⑶由⑵知是三棱锥的高.在直角中,

.又

.          --------------------12分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

 (本小题满分12分) 三棱柱中,侧棱与底面垂直,分别是的中点.

(Ⅰ)求证:平面

(Ⅱ)求证:平面

(Ⅲ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年山西省高三上学期期中考试文科数学试卷(解析版) 题型:解答题

如图,三棱柱中,侧棱与底面垂直,分别是的中点

(1)求证:∥平面

(2)求证:⊥平面

(3)求三棱锥的体积的体积.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省高三下学期模拟冲刺考试文科数学试卷(解析版) 题型:解答题

三棱柱中,侧棱与底面垂直,分别是的中点.

(Ⅰ)求证:平面

(Ⅱ)求证:平面

(Ⅲ)求三棱锥的体积.

【解析】第一问利连结,∵M,N是AB,的中点∴MN//

又∵平面,∴MN//平面      ----------4分

⑵中年∵三棱柱ABC-A1B1C1中,侧棱与底面垂直,∴四边形是正方形.∴.∴.连结

,又N中的中点,∴

相交于点C,∴MN平面.      --------------9分

⑶中由⑵知MN是三棱锥M-的高.在直角中,

∴MN=.又.得到结论。

⑴连结,∵M,N是AB,的中点∴MN//

又∵平面,∴MN//平面   --------4分

⑵∵三棱柱ABC-A1B1C1中,侧棱与底面垂直,

∴四边形是正方形.∴

.连结

,又N中的中点,∴

相交于点C,∴MN平面.      --------------9分

⑶由⑵知MN是三棱锥M-的高.在直角中,

∴MN=.又

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省湛江市高三下学期第六次月考考试文科数学 题型:解答题

..(本题14分)三棱柱中,侧棱与底面垂直,分别是的中点.

(Ⅰ)求证:平面

(Ⅱ)求证:平面

(Ⅲ)求三棱锥的体积.

 

 

 

 

查看答案和解析>>

同步练习册答案