【题目】已知数列
的前
项和为
,且
,
.
(1)若数列
是等差数列,且
,求实数
的值;
(2)若数列
满足![]()
,且
,求证:数列
是等差数列;
(3)设数列
是等比数列,试探究当正实数
满足什么条件时,数列
具有如下性质
:对于任意的![]()
,都存在
使得
,写出你的探求过程,并求出满足条件的正实数
的集合.
【答案】(1)
;(2)证明见解析;(3)![]()
【解析】
(1)首先根据
,
,求出
,再计算
即可.
(2)首先由
得到
,由
且
,
得到数列
的通项公式,即可证明数列
是等差数列.
(3)有题意得:
,然后对
分类讨论,可知当
,
,
时,数列
不具有性质
.当
时,对任意
,
,都有
,即当
时,数列
具有性质
.
(1)设等差数列
的公差为
,由
,
,得
,
解得
,则
,
所以
.
(2)因为
,
所以
,
解得
,
因为
,
,
,
当
为奇数时,
.
当
为偶数时,
.
所以对任意
,都有
.
当
时,
,即数列
是等差数列.
(3)解:由题意,
是等比数列,
.
①当
时,
,
所以对任意
,都有
,
因此数列
不具有性质
.
②当
时,
,
.
所以对任意
,都有
,
因此数列
不具有性质
.
③当
时,
.
,
.
取
(
表示不小于
的最小整数),
则
,
.
所以对于任意
,
.
即对于任意
,
都不在区间
内,
所以数列
不具有性质
.
④当
时,
,且
,
即对任意
,
,都有
,
所以当
时,数列
具有性质
.
综上,使得数列
具有性质
的正实数
的集合为
.
科目:高中数学 来源: 题型:
【题目】设椭圆
的左焦点为
,下顶点为
,上顶点为
,
是等边三角形.
(Ⅰ)求椭圆的离心率;
(Ⅱ)设直线
,过点
且斜率为
的直线与椭圆交于点
异于点
,线段
的垂直平分线与直线
交于点
,与直线
交于点
,若
.
(ⅰ)求
的值;
(ⅱ)已知点
,点
在椭圆上,若四边形
为平行四边形,求椭圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx
(b∈R),g(x)
.
(1)讨论函数f(x)的单调性
(2)是否存在实数b使得函数y=f(x)在x∈(
,+∞)上的图象存在函数y=g(x)的图象上方的点?若存在,请求出最小整数b的值,若不存在,请说明理由.(参考数据ln2=0.6931,
1.6487)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分13分)
某产品按行业生产标准分成8个等级,等级系数X依次为1,2,……,8,其中X≥5为标准A,X≥3为标准B,已知甲厂执行标准A生产该产品,产品的零售价为6元/件;乙厂执行标准B生产该产品,产品的零售价为4元/件,假定甲、乙两厂得产品都符合相应的执行标准
(I)已知甲厂产品的等级系数X1的概率分布列如下所示:
![]()
且X1的数字期望EX1=6,求a,b的值;
(II)为分析乙厂产品的等级系数X2,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:
3 5 3 3 8 5 5 6 3 4
6 3 4 7 5 3 4 8 5 3
8 3 4 3 4 4 7 5 6 7
用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X2的数学期望.
在(I)、(II)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由.
注:(1)产品的“性价比”=
;
(2)“性价比”大的产品更具可购买性.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,以
为极点,
轴的正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
;直线
的参数方程为
(
为参数),直线
与曲线
分别交于
,
两点.
(1)写出曲线
的直角坐标方程和直线
的普通方程;
(2)若点
的极坐标为
,
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆![]()
的左、右焦点分别为
,离心率为
,且
在椭圆
上运动,当点
恰好在直线l:
上时,
的面积为
.
(1)求椭圆
的方程;
(2)作与
平行的直线
,与椭圆交于
两点,且线段
的中点为
,若
的斜率分别为
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某人准备投资1200万元办一所中学,为了考虑社会效益和经济效益,对该地区教育市场进行调查,得出一组数据,列表如下(以班级为单位).
市场调查表:
班级学生数 | 配备教师数 | 硬件建设费(万元) | 教师年薪(万元) | |
初中 | 50 | 2.0 | 28 | 1.2 |
高中 | 40 | 2.5 | 58 | 1.6 |
根据物价部门的有关规定:初中是义务教育阶段,收费标准适当控制,预计除书本费、办公费外,初中每人每年可收取600元.高中每人每年可收取1500元.因生源和环境等条件限制,办学规模以20至30个班为宜(含20个班与30个),教师实行聘任制.初、高中教育周期均为三年,设初中编制为
个班,高中编制为
个班,请你合理地安排招生计划,使年利润最大.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com