精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ln(x+1)+ax.
(1)当x=0时,函数f(x)取得极大值,求实数a的值;
(2)若存在x∈[1,2],使不等式f′(x)≥2x成立,其中f′(x)为f(x)的导函数,求实数a的取值范围;
(3)求函数f(x)的单调区间.
分析:(1)求出f′(x),因为x=0时函数取得极大值,所以f′(0)=0,化简即可求出a的值,把a的值代入f(x)中检验,方法是在函数的定义域范围内,讨论导函数的正负得到函数的单调区间,根据函数的增减性即可得到x=0处取得极大值;
(2)把f′(x)的解析式代入f′(x)≥2x中,解得a大于等于2x-
1
x+1
,设g(x)=2x-
1
x+1
,求出g(x)的最大值,即可求出a的范围,方法是求出g′(x),得到g′(x)大于0即函数在[1,2]为增函数,所以g(x)的最大值为g(2),列出关于a的不等式,求出解集即可得到a的取值范围;
(3)求出f′(x)=0时x的值,分a大于等于0和a小于0两种情况在函数的定义域内,讨论导函数的正负即可得到函数的单调区间.
解答:解:(1)f′(x)=
1
x+1
+a
由f′(0)=0,得a=-1,此时f′(x)=
1
x+1
-1.
当x∈(-1,0)时,f′(x)>0,函数f(x)在区间(-1,0)上单调递增;
当x∈(0,+∞)时,f′(x)<0,函数f(x)在区间(0,+∞)上单调递减;
∴函数f(x)在x=0处取得极大值,故a=-1.
(2)∵f′(x)≥2x,∴
1
x+1
+a≥2x,∴a≥2x-
1
x+1

令g(x)=2x-
1
x+1
(1≤x≤2),
∴g′(x)=2+
1
(x+1)2
>0,∴g(x)在[1,2]上是增函数,
∴a≥g(1)=
7
2
.存在x∈[1,2],使不等式f′(x)≥2x成立.
(3)f′(x)=
1
x+1
+a.
1
x+1
>0,
∴当a≥0时,f′(x)>0,函数f(x)在(-1,+∞)上是增函数.
当a<0时,令f′(x)=0,x=-
1
a
-1;
若x∈(-1,-
1
a
-1)时,f′(x)>0,
若x∈(-
1
a
-1,+∞)时,f′(x)<0;
综上,当a≥0时,函数f(x)递增区间是(-1,+∞);
当a<0时,函数f(x)递增区间是:(-1,-
1
a
-1),递减区间是:(-
1
a
-1,+∞).
点评:本题考查学生会根据导函数的正负得到函数的单调区间,会根据函数的增减性得到函数的极值,掌握不等式恒成立时所取的条件,是一道综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案