精英家教网 > 高中数学 > 题目详情
12.计算:(0.064)${\;}^{-\frac{1}{3}}$+[(-2)5]${\;}^{-\frac{2}{5}}$-($\frac{1}{16}$)0.75+sin210°+log2$\sqrt{2}$.

分析 利用有理指数幂的运算法则以及对数运算法则化简求解即可.

解答 解:(0.064)${\;}^{-\frac{1}{3}}$+[(-2)5]${\;}^{-\frac{2}{5}}$-($\frac{1}{16}$)0.75+sin210°+log2$\sqrt{2}$
=$\frac{5}{2}$+$\frac{1}{4}$-1-$\frac{1}{2}$+$\frac{1}{2}$
=$\frac{1}{4}$.

点评 本题考查有理指数幂的运算法则以及对数运算法则,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.过点P($\frac{{\sqrt{10}}}{2},0$)作倾斜角为α的直线与曲线x2+2y2=1交于M,N两点,求|PM|•|PN|的最小值及相应的α值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=2x2-4x-3,(0<x<3)的值域为(  )
A.(-3,3)B.(-5,-3)C.(-5,3)D.(-5,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.若函数$f(x)=\frac{1}{3}{x^3}+a{x^2}-bx+4$在点P(2,f(2))处的切线为$y=4x-\frac{10}{3}$.
(1)求函数f(x)的解析式;
(2)讨论方程f(x)=k实数解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若复数Z满足Z=i(1-i),求|Z|=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=2sin(ωx+φ)(x∈R,ω>0,0<φ<$\frac{π}{2}$)有两个相邻的零点:-$\frac{π}{6}$,$\frac{π}{2}$.
(1)求f(x)的解析式;
(2)若f(α)=$\frac{2\sqrt{2}}{3}$,求cos6α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.命题“?x0∈R,使得x02>4”的否定是(  )
A.?x0∉R,使得$x_0^2>4$B.?x0∉R,使得$x_0^2≤4$
C.?x∈R,x2>4D.?x∈R,x2≤4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求y=log${\;}_{\frac{1}{2}}$(-x2-2x+3)的定义域、值域及单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,已知$b=5\sqrt{3}$,c=15,B=30°,则角C=60°或120°.

查看答案和解析>>

同步练习册答案