精英家教网 > 高中数学 > 题目详情

【题目】如图,在直角梯形中,,点是线段的中点,将分别沿

向上折起,使重合于点,得到三棱锥.试在三棱锥中,

1)证明:平面平面

2)求直线与平面所成角的正弦值.

【答案】1)证明见解析;(2.

【解析】

1)根据勾股定理的逆定理,得出,而,根据线面垂直的判定定理证出平面,最后利用面面垂直的判定定理,即可证明平面平面

2)以为坐标原点,轴,轴,轴,建立空间直角坐标系,根据空间坐标的运算可得出和平面的法向量,利用空间向量法求夹角的公式,即可求出直线与平面所成角的正弦值.

解:(1)由题知:在直角梯形中,

所以在三棱锥中,

所以

又因为

所以平面 又因为平面

所以,平面平面.

2)由(1)知:,又

为坐标原点,以的方向分别作为轴,轴,轴的正方向,

建立如图空间直角坐标系

所以

为平面的法向量,

,可得

得:

设直线与平面所成角为,所以

所以直线与平面所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数.

1)讨论的单调性;

2)若有两个极值点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知单调递增的等比数列满足,且的等差中项.

(Ⅰ)求数列的通项公式;

(Ⅱ)若,对任意正数数 恒成立,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区对当地的某种土特产的销售量y(吨)和销售单价x(元/千克)之间的关系进行了调查,得到下表中的数据:

销售单价x(元/千克)

11

10.5

10

9.5

9

8

销售量y(吨)

5

6

8

10

11

14.1

1)根据前5组数据,求出y关于x的回归直线方程.

2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过0.5,则认为回归直线方程是理想的,试问(1)中得到的回归直线方程是否理想?

3)如果销售量y(吨)和销售单价x(元/千克)之间仍然服从(1)中的关系,进货成本为2.5/千克,且货源充足(未售完的部分可按成本价全部售出),为了使利润最大,请你就如何确定销售单价给出合理建议.(每千克销售单价不超过12元)

参考公式:回归直线方程,其中

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求曲线在点处的切线方程;

(2)若在区间上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线过坐标原点O且与圆相交于点AB,圆M过点AB且与直线相切.

1)求圆心M的轨迹C的方程;

2)若圆心在x轴正半轴上面积等于的圆W与曲线C有且仅有1个公共点.

(ⅰ)求出圆W标准方程;

(ⅱ)已知斜率等于的直线,交曲线CEF两点,交圆WPQ两点,求的最小值及此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,求函数的单调递减区间;

2)若关于的不等式恒成立,求整数的最小值;

3)若,正实数满足,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数是自然对数的底数,)存在唯一的零点,则实数的取值范围为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在《周髀算经》中,把圆及其内接正方形称为圆方图,把正方形及其内切圆称为方圆图.圆方图和方圆图在我国古代的设计和建筑领域有着广泛的应用.山西应县木塔是我国现存最古老、最高大的纯木结构楼阁式建筑,它的正面图如下图所示.以该木塔底层的边作正方形,以点或点为圆心,以这个正方形的对角线为半径作圆,会发现塔的高度正好跟此对角线长度相等.以该木塔底层的边作正方形,会发现该正方形与其内切圆的一个切点正好位于塔身和塔顶的分界线上.经测量发现,木塔底层的边不少于47.5米,塔顶到点的距离不超过19.9米,则该木塔的高度可能是(参考数据:)(

A.66.1B.67.3C.68.5D.69.0

查看答案和解析>>

同步练习册答案