【题目】选修4-4:坐标系与参数方程
已知曲线
的极坐标方程为
,以极点为原点, 极轴为
轴的正半轴, 建立平面直角坐标系, 直线
的参数方程为
为参数).
(1)判断直线
与曲线
的位置关系, 并说明理由;
(2)若直线
与曲线
相交于
两点, 且
,求直线
的斜率.
科目:高中数学 来源: 题型:
【题目】已知函数
(
为常数,
),且数列
是首项为2,公差为2的等差数列.
(1)若
,当
时,求数列
的前
项和
;
(2)设
,如果
中的每一项恒小于它后面的项,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义为
的函数
满足下列条件:①对任意的实数
都有:
;②当
时,
.
(1)求
;
(2)求证:
在
上为增函数;
(3)若
,关于
的不等式
对任意
恒成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
,其中
为实数.
(1)是否存在
,使得
?若存在,求出实数
的取值范围;若不存在,请说明理由;
(2)若集合
中恰有5个元素,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥P-ABCD,底面ABCD是边长为2的蓌形,PA⊥平面ABCD,PA=2,∠ABC=60°,E,F分别是BC,PC的中点。
![]()
(1)求证:AE⊥PD;
(2)求二面角E-AF-C的余弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《算法统宗》是我国古代数学名著.在这部著作中,许多数学问题都是以歌诀形式呈现的,“竹筒容米”就是其中一首:家有八节竹一茎,为因盛米不均平;下头三节三生九,上梢三节贮三升;唯有中间二节竹,要将米数次第盛;若是先生能算法,也教算得到天明!大意是:用一根8节长的竹子盛米,每节竹筒盛米的容积是不均匀的,下端3节可盛米3.9升,上端3节可盛米3升.要按依次盛米容积相差同一数量的方式盛米,中间两节可盛米多少升?由以上条件,计算出这根八节竹筒的容积为( )
A.
升 B.
升 C.
升 D.
升
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的中心在原点
,焦点在
轴上,离心率为
,右焦点到右顶点的距离为
.
(1)求椭圆
的标准方程;
(2)是否存在与椭圆
交于
两点的直线
,使得
成立?若存在,求出实数
的取值范围,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学(男30女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如下表:(单位:人)
几何题 | 代数题 | 总计 | |
男同学 | 22 | 8 | 30 |
女同学 | 8 | 12 | 20 |
总计 | 30 | 20 | 50 |
(1)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?
(2)现从选择做几何题的8名女生中任意抽取两人对她们的答题情况进行全程研究,记甲、乙两女生被抽到的人数为X,求X的分布列及数学期望E(X).
附表及公式:
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com