精英家教网 > 高中数学 > 题目详情
已知a>0且a≠1,若函数f (x)=loga(ax2-x)在[3,4]是增函数,则a的取值范围是(  )
A、(1,+∞)
B、(
1
6
1
4
)∪(1,+∞)
C、[
1
8
1
4
)∪(1,+∞)
D、[
1
6
1
4
分析:当a>1时,由于函数t=ax2-x在[3,4]是增函数,且函数t大于0,故函数f (x)=loga(ax2-x)在[3,4]是增函数. 当 1>a>0时,由题意可得 函数t=ax2-x在[3,4]应是减函数,且函数t大于0,故
1
a
≥4,且
16a-4>0,此时,a无解.
解答:解:当a>1时,由于函数t=ax2-x在[3,4]是增函数,且函数t大于0,
故函数f (x)=loga(ax2-x)在[3,4]是增函数,满足条件.
当 1>a>0时,由题意可得 函数t=ax2-x在[3,4]应是减函数,且函数t大于0,
 故
1
a
≥4,且 16a-4>0.   即 a≤
1
4
,且 a>
1
4
,∴a∈∅.
综上,只有当a>1时,才能满足条件,
故选 A.
点评:本题考查对数函数的单调性和特殊点,二次函数的性质,复合函数的单调性,注意利用函数t=ax2-x在[3,4]上
大于0这个条件,这是解题的易错点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a>0且a≠1,设p:函数y=ax在R上单调递增,q:设函数y=
2x-2a,(x≥2a)
2a,(x<2a)
,函数y≥1恒成立,若p∧q为假,p∨q为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•普陀区二模)已知a>0且a≠1,函数f(x)=loga(x+1),g(x)=loga
11-x
,记F(x)=2f(x)+g(x)
(1)求函数F(x)的定义域D及其零点;
(2)若关于x的方程F(x)-m=0在区间[0,1)内有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0且a≠1,则使方程loga(x-ak)=loga2(x2-a2)有解时的k的取值范围为
(-∞,-1)∪(0,1)
(-∞,-1)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0且a≠1,函数f(x)=loga(x+1),g(x)=loga
11-x
,记F(x)=2f(x)+g(x)
(1)求函数F(x)的定义域D及其零点;
(2)试讨论函数F(x)在定义域D上的单调性;
(3)若关于x的方程F(x)-2m2+3m+5=0在区间[0,1)内仅有一解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:普陀区二模 题型:解答题

已知a>0且a≠1,函数f(x)=loga(x+1),g(x)=loga
1
1-x
,记F(x)=2f(x)+g(x)
(1)求函数F(x)的定义域D及其零点;
(2)若关于x的方程F(x)-m=0在区间[0,1)内有解,求实数m的取值范围.

查看答案和解析>>

同步练习册答案