【题目】如图,矩形
和梯形
所在的平面互相垂直,
,
,
.
![]()
(1)若
为
的中点,求证:
平面
;
(2)若
,求四棱锥
的体积.
【答案】(1)见解析(2) ![]()
【解析】
(1)设EC与DF交于点N,连结MN,由中位线定理可得MN∥AC,故AC∥平面MDF;
(2)取CD中点为G,连结BG,EG,则可证四边形ABGD是矩形,由面面垂直的性质得出BG⊥平面CDEF,故BG⊥DF,又DF⊥BE得出DF⊥平面BEG,从而得出DF⊥EG,得出Rt△DEG~Rt△EFD,列出比例式求出DE,代入体积公式即可计算出体积.
(1)证明:设
与
交于点
,连接
,
在矩形
中,点
为
中点,
∵
为
的中点,∴
,
又∵
平面
,
平面
,
∴
平面
.
(2)取
中点为
,连接
,
,
![]()
平面
平面
,
平面
平面
,
平面
,
,
∴
平面
,同理
平面
,
∴
的长即为四棱锥
的高,
在梯形
中
,
,
∴四边形
是平行四边形,
,
∴
平面
,
又∵
平面
,∴
,
又
,
,
∴
平面
,
.
注意到
,
∴
,
,
∴
.
科目:高中数学 来源: 题型:
【题目】【选修4-4:坐标系与参数方程】
在平面直角坐标系
中,曲线
的参数方程为:
(
为参数,
),将曲线
经过伸缩变换:
得到曲线
.
(1)以原点为极点,
轴的正半轴为极轴建立坐标系,求
的极坐标方程;
(2)若直线
(
为参数)与
相交于
两点,且
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市环保部门对该市市民进行了一次垃圾分类知识的网络问卷调查,每位市民仅有一次参加机会,通过随机抽样,得到参与问卷调查的100人的得分(满分:100分)数据,统计结果如表所示:
组别 |
|
|
|
|
|
|
男 | 2 | 3 | 5 | 15 | 18 | 12 |
女 | 0 | 5 | 10 | 10 | 7 | 13 |
(1)若规定问卷得分不低于70分的市民称为“环保关注者”,请完成答题卡中的
列联表,并判断能否在犯错误概率不超过0.05的前提下,认为是否为“环保关注者”与性别有关?
(2)若问卷得分不低于80分的人称为“环保达人”.视频率为概率.
①在我市所有“环保达人”中,随机抽取3人,求抽取的3人中,既有男“环保达人”又有女“环保达人”的概率;
②为了鼓励市民关注环保,针对此次的调查制定了如下奖励方案:“环保达人”获得两次抽奖活动;其他参与的市民获得一次抽奖活动.每次抽奖获得红包的金额和对应的概率.如下表:
红包金额(单位:元) | 10 | 20 |
概率 |
|
|
现某市民要参加此次问卷调查,记
(单位:元)为该市民参加间卷调查获得的红包金额,求
的分布列及数学期望.
附表及公式:![]()
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】工厂车间某部门有8个小组,在一次技能考试中成绩情况分析如下:
小组 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
大于90分人数 | 6 | 6 | 7 | 3 | 5 | 3 | 3 | 7 |
不大于90分人数 | 39 | 39 | 38 | 42 | 40 | 42 | 42 | 38 |
(1)求90分以上人数
对小组序号
的线性回归方程;
附:回归方程为
,其中
,
.本题
,
.
(2)能否在犯错误的概率不超过0.01的前提下认为7组与8组的成绩是否优秀(大于90分)与小组有关系.附部分临界值表:
| 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设集合![]()
,如果对于
的每一个含有![]()
个元素的子集
,
中必有
个元素的和等于
,称正整数
为集合
的一个“相关数”
(1)当
时,判断
和
是否为集合
的“相关数”,说明理由;
(2)若
为集合
的“相关数”,证明:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,几何体EF-ABCD中,四边形CDEF是正方形,四边形ABCD为直角梯形,AB∥CD,AD⊥DC,△ACB是腰长为2
的等腰直角三角形,平面CDEF⊥平面ABCD.
(1)求证:BC⊥AF;
(2)求几何体EF-ABCD的体积.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com