精英家教网 > 高中数学 > 题目详情

【题目】如图,矩形和梯形所在的平面互相垂直,.

(1)若的中点,求证:平面

(2)若,求四棱锥的体积.

【答案】(1)见解析(2)

【解析】

(1)设ECDF交于点N,连结MN,由中位线定理可得MNAC,故AC∥平面MDF;

(2)取CD中点为G,连结BG,EG,则可证四边形ABGD是矩形,由面面垂直的性质得出BG⊥平面CDEF,故BGDF,又DFBE得出DF⊥平面BEG,从而得出DFEG,得出RtDEGRtEFD,列出比例式求出DE,代入体积公式即可计算出体积.

(1)证明:设交于点,连接

在矩形中,点中点,

的中点,∴

又∵平面平面

平面.

(2)取中点为,连接

平面平面

平面平面

平面

平面,同理平面

的长即为四棱锥的高,

在梯形

∴四边形是平行四边形,

平面

又∵平面,∴

平面.

注意到

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x(lnxax)有两个极值点,则实数a的取值范围是(   )

A. (-∞,0) B. C. (0,1) D. (0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【选修4-4:坐标系与参数方程】

在平面直角坐标系中,曲线的参数方程为: 为参数, ),将曲线经过伸缩变换: 得到曲线.

(1)以原点为极点, 轴的正半轴为极轴建立坐标系,求的极坐标方程;

(2)若直线为参数)与相交于两点,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

讨论函数的单调性;

时,求函数在区间上的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市环保部门对该市市民进行了一次垃圾分类知识的网络问卷调查,每位市民仅有一次参加机会,通过随机抽样,得到参与问卷调查的100人的得分(满分:100分)数据,统计结果如表所示:

组别

2

3

5

15

18

12

0

5

10

10

7

13

(1)若规定问卷得分不低于70分的市民称为“环保关注者”,请完成答题卡中的列联表,并判断能否在犯错误概率不超过0.05的前提下,认为是否为“环保关注者”与性别有关?

(2)若问卷得分不低于80分的人称为“环保达人”.视频率为概率.

①在我市所有“环保达人”中,随机抽取3人,求抽取的3人中,既有男“环保达人”又有女“环保达人”的概率;

②为了鼓励市民关注环保,针对此次的调查制定了如下奖励方案:“环保达人”获得两次抽奖活动;其他参与的市民获得一次抽奖活动.每次抽奖获得红包的金额和对应的概率.如下表:

红包金额(单位:元)

10

20

概率

现某市民要参加此次问卷调查,记(单位:元)为该市民参加间卷调查获得的红包金额,求的分布列及数学期望.

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】工厂车间某部门有8个小组,在一次技能考试中成绩情况分析如下:

小组

1

2

3

4

5

6

7

8

大于90分人数

6

6

7

3

5

3

3

7

不大于90分人数

39

39

38

42

40

42

42

38

1)求90分以上人数对小组序号的线性回归方程;

附:回归方程为,其中.本题.

2)能否在犯错误的概率不超过0.01的前提下认为7组与8组的成绩是否优秀(大于90分)与小组有关系.附部分临界值表:

0.05

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合,如果对于的每一个含有个元素的子集中必有个元素的和等于,称正整数为集合的一个相关数

1)当时,判断是否为集合相关数,说明理由;

2)若为集合相关数,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,几何体EF-ABCD中,四边形CDEF是正方形,四边形ABCD为直角梯形,ABCDADDC,△ACB是腰长为2的等腰直角三角形,平面CDEF⊥平面ABCD

(1)求证:BCAF

(2)求几何体EF-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P-ABC中,底面ABC.

1)求证:平面平面PBC

2)若MPB的中点,求AM与平面PBC所成角的正切值.

查看答案和解析>>

同步练习册答案