精英家教网 > 高中数学 > 题目详情

【题目】已知极点与坐标原点重合,极轴与轴非负半轴重合,是曲线上任一点满足,设点的轨迹为.

1)求曲线的平面直角坐标方程;

2)将曲线向右平移个单位后得到曲线,设曲线与直线为参数)相交于两点,记点,求.

【答案】1;(2.

【解析】

1)设点的极坐标为,可得出点的极坐标为,将点的极坐标代入曲线的极坐标方程,可得出曲线的极坐标方程,再将此极坐标方程化为直角坐标方程;

2)根据平移规律得出曲线的直角坐标方程,然后将直线的参数方程化为为参数),并将该参数方程与曲线的方程联立,列出韦达定理,利用韦达定理可计算出的值.

1)设,由可知点,那么.

代入曲线,得

则曲线的极坐标方程为化为直角坐标方程,即得为所求;

2)将曲线向右平移个单位后,得到曲线的方程为.

将直线的参数方程化为为参数),

代入曲线的方程,整理得到

记交点对应的参数分别为,那么.

那么,为所求.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,侧棱都和平面垂直,.

1)证明:平面平面

2)求多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知是圆的直径,在圆上且分别在的两侧,其中.现将其沿折起使得二面角为直二面角,则下列说法不正确的是(

A.在同一个球面上

B.时,三棱锥的体积为

C.是异面直线且不垂直

D.存在一个位置,使得平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的左焦点为离心率为为圆的圆心.

(1)求椭圆的方程;

(2)已知过椭圆右焦点的直线交椭圆于两点,过且与垂直的直线与圆交于两点,求四边形面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,过坐标原点和点分别作曲线的切线,则直线轴所围成的封闭图形的面积为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市房管局为了了解该市市民月至月期间买二手房情况,首先随机抽样其中名购房者,并对其购房面积(单位:平方米,)进行了一次调查统计,制成了如图所示的频率分布直方图,接着调查了该市月至月期间当月在售二手房均价(单位:万元/平方米),制成了如图所示的散点图(图中月份代码分别对应月至月).

1)试估计该市市民的购房面积的中位数

2)从该市月至月期间所有购买二手房中的市民中任取人,用频率估计概率,记这人购房面积不低于平方米的人数为,求的数学期望;

3)根据散点图选择两个模型进行拟合,经过数据处理得到两个回归方程,分别为,并得到一些统计量的值如下表所示:

请利用相关指数判断哪个模型的拟合效果更好,并用拟合效果更好的模型预测出月份的二手房购房均价(精确到

(参考数据).

(参考公式).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角ABC的对边分别为abc,且(2bc)cos Aacos C

(1)求角A的大小;

(2)若a=3,b=2c,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是矩形,沿对角线折起,使得点在平面上的射影恰好落在边上.

(1)求证:平面平面

(2)当时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn1+λan,其中λ≠0

1)证明{an}是等比数列,并求其通项公式;

2)当λ2时,求数列{}的前n项和.

查看答案和解析>>

同步练习册答案