精英家教网 > 高中数学 > 题目详情

【题目】PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物).为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某一时间段车流量与PM2.5的数据如表:

时间

周一

周二

周三

周四

周五

车流量x(万辆)

50

51

54

57

58

PM2.5的浓度y(微克/立方米)

69

70

74

78

79


(1)根据上表数据,请在如图坐标系中画出散点图;

(2)根据上表数据,用最小二乘法求出y关于x的线性回归方程 ;(保留2位小数)
(3)若周六同一时间段车流量是25万辆,试根据(2)求出的线性回归方程预测,此时PM2.5的浓度为多少(保留整数)?
参考公式: = =

【答案】
(1)解:散点图如图所示.


(2)解:

=64, =50,

故y关于x的线性回归方程是:


(3)解:当x=2.5时,y=1.28×25+4.88=36.88≈37

所以可以预测此时PM2.5的浓度约为37


【解析】(1)利用描点法可得数据的散点图;(2)根据公式求出b,a,可写出线性回归方程;(3)根据(2)的性回归方程,代入x=25求出PM2.5的浓度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】有下列命题中,正确的是(
A.“若 ,则 ”的逆命题
B.命题“?x∈R, ”的否定
C.“面积相等的三角形全等”的否命题
D.“若A∩B=B,则A?B”的逆否命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的左顶点为,且椭圆与直线相切,

(1)求椭圆的标准方程;

(2)过点的动直线与椭圆交于两点,设为坐标原点,是否存在常数,使得?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列说法:
①集合A={x∈Z|x=2k﹣1,k∈Z}与集合B={x∈z|x=2k+3,k∈Z}是相等集合;
②若函数f(x)的定义域为[0,2],则函数f(2x)的定义域为[0,4];
③函数y= 的单调减区间是(﹣∞,0)∪(0,+∞);
④不存在实数m,使f(x)=x2+mx+1为奇函数;
⑤若f(x+y)=f(x)f(y),且f(1)=2,则 + +…+ =2016.
其中正确说法的序号是(
A.①②③
B.②③④
C.①③⑤
D.①④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2x(x∈[﹣1,2])的值域为集合A,g(x)=ax+2(x∈[﹣1,2])的值域为集合B.若AB,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求证: (a≥3).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图为某市2017年2月28天的日空气质量指数折线图.

由中国空气质量在线监测分析平台提供的空气质量指数标准如下:

(1)请根据所给的折线图补全下方的频率分布直方图(并用铅笔涂黑矩形区域),并估算该市2月份空气质量指数监测数据的平均数(保留小数点后一位);

(2)研究人员发现,空气质量指数测评中与燃烧排放的两个项目存在线性相关关系,以为单位,下表给出的相关数据:

关于的回归方程,并估计当排放量是时, 的值.

(用最小二乘法求回归方程的系数是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知奇函数f(x)满足f(x+2)=f(x﹣2),当x∈(0,1)时,f(x)=3x , 则f( )=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在梯形中, 平面,且,点上,且.

(Ⅰ)求证: 平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

同步练习册答案