【题目】假设某种设备使用的年限x(年)与所支出的维修费用y(万元)有以下统计资料:
使用年限x | 2 | 3 | 4 | 5 | 6 |
维修费用y | 2 | 4 | 5 | 6 | 7 |
若由资料知y对x呈线性相关关系。试求:
(1)求
; (2)线性回归方程
;
(3)估计使用10年时,维修费用是多少?
附:利用“最小二乘法”计算a,b的值时,可根据以下公式:
![]()
科目:高中数学 来源: 题型:
【题目】已知{an}为等差数列,a1+a3+a5=105,a2+a4+a6=99,以Sn表示{an}的前n项和,则使得Sn达到最大值的n是( )
A.21
B.20
C.19
D.18
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图甲所示,
是梯形
的高,
,
,
,现将梯形
沿
折起如图乙所示的四棱锥
,使得
,点
是线段
上一动点.
![]()
![]()
(1)证明:
和
不可能垂直;
(2)当
时,求
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设直线
与圆
交于M、N两点,且M、N关于直线
对称.
(1)求m,k的值;
(2)若直线
与圆C交P,Q两点,是否存在实数a使得OP⊥OQ,如果存在,求出a的值;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从装有
个红球和
个黑球的口袋内任取
个球,那么互斥而不对立的两个事件是( )
A. 至少有一个黑球与都是黑球 B. 至少有一个黑球与都是红球
C. 至少有一个黑球与至少有
个红球 D. 恰有
个黑球与恰有
个黑球
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥
中,底面为矩形,
底面
,
,
为
中点.
![]()
(Ⅰ)在图中作出平面
与
的交点
,并指出点
所在位置(不要求给出理由);
(Ⅱ)在线段
上是否存在一点
,使得直线
与平面
所成角的正弦值为
,若存在,请说明点
的位置;若不存在,请说明理由;
(Ⅲ)求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,l1,l2是通过某城市开发区中心O的两条南北和东西走向的街道,连结M、N两地之间的铁路线是圆心在l2上的一段圆弧.若点M在点O正北方向,且|MO|=3 km,点N到l1,l2的距离分别为4 km和5 km.
![]()
(1)建立适当的坐标系,求铁路线所在圆弧的方程;
(2)若该城市的某中学拟在点O正东方向选址建分校,考虑环境问题,要求校址到点O的距离大于4 km,并且铁路线上任意一点到校址的距离不能少于
km,求该校址距点O的最近距离.(注:校址视为一个点)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在等比数列{an}中,a2=6,a2+a3=24,在等差数列{bn}中,b1=a1 , b3=﹣10.
(1)求数列{an}的通项公式;
(2)求数列{bn}的前n项和Sn .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com