精英家教网 > 高中数学 > 题目详情
设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2.点P(a,b)满足|PF2|=|F1F2|.
(Ⅰ)求椭圆的离心率e;
(Ⅱ)设直线PF2与椭圆相交于A,B两点,若直线PF2与圆(x+1)2+=16相交于M,N两点,且|MN|=|AB|,求椭圆的方程.
【答案】分析:(Ⅰ)直接利用|PF2|=|F1F2|,对应的方程整理后即可求椭圆的离心率e;
(Ⅱ)先把直线PF2与椭圆方程联立求出A,B两点的坐标以及对应的|AB|两点,进而求出|MN|,再利用弦心距,弦长以及圆心到直线的距离之间的等量关系,即可求椭圆的方程.
解答:解:(Ⅰ)设F1(-c,0),F2(c,0)    (c>0).
由题得|PF2|=|F1F2|,即=2c,整理得2+-1=0,得=-1(舍),或=
所以e=
(Ⅱ)由(Ⅰ)知a=2c,b=c,可得椭圆方程为3x2+4y2=12c2,直线方程PF2为y=(x-c).
A,B的坐标满足方程组
消y并整理得5x2-8xc=0,
解得x=0,x=,得方程组的解为
不妨设A(c,c),B(0,-c).
所以|AB|==c,于是|MN|=|AB|=2c.
圆心(-1,)到直线PF2的距离d=
因为d2+=42,所以(2+c)2+c2=16,整理得c=-(舍)或c=2.
所以椭圆方程为+=1.
点评:本题主要考查椭圆的方程和几何性质,直线的方程,两点间的距离公式以及点到直线的距离公式等基础知识,考查用代数方法研究圆锥曲线的性质和数形结合的数学思想,考查解决问题的能力和运算能力.
练习册系列答案
相关习题

科目:高中数学 来源:2007年天津市高考数学试卷(理科)(解析版) 题型:解答题

设椭圆=1(a>b>0)的左、右焦点分别为F1,F2,A是椭圆上的一点,AF2⊥F1F2,原点O到直线AF1的距离为
(I)证明:
(II)设Q1,Q2为椭圆上的两个动点,OQ1⊥OQ2,过原点O作直线Q1Q2的垂线OD,垂足为D,求点D的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆数学公式+数学公式=1(a>b>0)的离心率为e,A为椭圆上一点,弦AB,AC分别过焦点F1,F2
(I)若∠AF1F2=α,∠AF2F1=β,试用α,β表示椭圆的离心率e;
(II)设数学公式1数学公式数学公式2数学公式,当A在椭圆上运动时,求证:λ12为定值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省九江市都昌二中高三(上)周考数学试卷(6)(文科)(解析版) 题型:解答题

设椭圆=1(a>b>0)过点,且左焦点为
(Ⅰ)求椭圆C的方程;
(Ⅱ)当过点P(4,1)的动直线l与椭圆C相交与两不同点A,B时,在线段AB上取点Q,满足=,证明:点Q总在某定直线上.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年黑龙江省哈尔滨九中高二(上)期末数学试卷(文科)(解析版) 题型:解答题

设椭圆=1(a>b>0)过点,且左焦点为
(Ⅰ)求椭圆C的方程;
(Ⅱ)当过点P(4,1)的动直线l与椭圆C相交与两不同点A,B时,在线段AB上取点Q,满足=,证明:点Q总在某定直线上.

查看答案和解析>>

科目:高中数学 来源:2009年高考数学压轴试卷集锦(8)(解析版) 题型:解答题

在平面直角坐标系xOy中,设椭圆=1(a>b>0)的焦距为2c.以点O为圆心,a为半径作圆M.若过点P(,0)所作圆M的两条切线互相垂直,则该椭圆的离心率为______

查看答案和解析>>

同步练习册答案