分析 分别求出直线和圆的普通方程,联立方程,结合二次函数的性质得到△>0,判断即可.
解答 解:由直线l的参数方程为:$\left\{\begin{array}{l}x=t+4\\ y=kt\end{array}\right.$,
得直线l的普通方程是:y=k(x-4),
由圆C的极坐标方程为:p=4cosθ,得ρ2=4ρcosθ,
故C的普通方程是:(x-2)2+y2=4,
由$\left\{\begin{array}{l}{y=k(x-4)}\\{{(x-2)}^{2}{+y}^{2}=4}\end{array}\right.$,得:(1+k2)x2-(8k2+4)x+16k2=0,
故△=[-(8k2+4)]2-4(1+k2)•16k2=16>0,
故直线和圆相交,
故答案为:相交.
点评 本题考查了直线和圆的位置关系,考查普通方程和参数方程以及极坐标方程的转化,是一道中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | $\frac{1}{3}$ | C. | $\frac{1}{3}$或0 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x∈(0,π),sinx=tanx | |
| B. | 条件p:$\left\{\begin{array}{l}{x+y>4}\\{xy>4}\end{array}\right.$,条件q:$\left\{\begin{array}{l}{x>2}\\{y>2}\end{array}\right.$,则p是q的必要不充分条件 | |
| C. | “?x∈R,x2+x+1>0”的否定是“?x0∈R,x02+x0+1<0” | |
| D. | ?θ∈R,函数f(x)=sin(2x+θ)都不是偶函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 20种 | B. | 15种 | C. | 10种 | D. | 4种 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com