【题目】已知函数f(x)=lnx﹣x2与g(x)=(x﹣2)2﹣
﹣m的图象上存在关于(1,0)对称的点,则实数m的取值范围是( )
A.(﹣∞,1﹣ln2)
B.(﹣∞,1﹣ln2]
C.(1﹣ln2,+∞)
D.[1﹣ln2,+∞)
【答案】D
【解析】解:由已知可得:g(x)=(x﹣2)2﹣
﹣m的图象
与函数y=﹣f(2﹣x)=﹣ln(2﹣x)+(2﹣x)2的图象有交点,
即(x﹣2)2﹣
﹣m=﹣ln(2﹣x)+(2﹣x)2有解,
即m=ln(2﹣x)﹣
有解,
令t=2﹣x,y=ln(2﹣x)﹣
=lnt+
,
则y′=
﹣
=
,
当t∈(0,
)时,y′<0,函数为减函数;
当t∈(
,+∞)时,y′>0,函数为增函数;
故当t=
时,函数取最小值ln
+1=1﹣ln2,无最大值,
故m∈[1﹣ln2,+∞),
故选:D
【考点精析】认真审题,首先需要了解利用导数研究函数的单调性(一般的,函数的单调性与其导数的正负有如下关系: 在某个区间
内,(1)如果
,那么函数
在这个区间单调递增;(2)如果
,那么函数
在这个区间单调递减).
科目:高中数学 来源: 题型:
【题目】某社区新建了一个休闲小公园,几条小径将公园分成5块区域,如图,社区准备从4种颜色不同的花卉中选择若干种种植在各块区域,要求每个区域随机用一种颜色的花卉,且相邻区域(用公共边的)所选花卉颜色不能相同,则不同种植方法的种数共有( ) ![]()
A.96
B.114
C.168
D.240
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】共享单车进驻城市,绿色出行引领时尚,某市有统计数据显示,2016年该市共享单车用户年龄等级分布如图1所示,一周内市民使用单车的频率分布扇形图如图2所示,若将共享单车用户按照年龄分为“年轻人”(20岁~39岁)和“非年轻人”(19岁及以下或者40岁及以上)两类,将一周内使用的次数为6次或6次以上的称为“经常使用单车用户”,使用次数为5次或不足5次的称为“不常使用单车用户”,已知在“经常使用单车用户”中有
是“年轻人”. ![]()
(Ⅰ)现对该市市民进行“经常使用共享单车与年龄关系”的调查,采用随机抽样的方法,抽取一个容量为200的样本,请你根据图表中的数据,补全下列2×2列联表,并根据列联表的独立性检验,判断能有多大把握可以认为经常使用共享单车与年龄有关?
使用共享单车情况与年龄列联表
年轻人 | 非年轻人 | 合计 | |
经常使用共享单车用户 | 120 | ||
不常使用共享单车用户 | 80 | ||
合计 | 160 | 40 | 200 |
(Ⅱ)将频率视为概率,若从该市市民中随机任取3人,设其中经常使用共享单车的“非年轻人”人数为随机变量X,求X的分布列与期望.
(参考数据:
P(K2≥k0) | 0.15 | 0.10 | 0.050 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
其中,K2=
,n=a+b+c+d)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设定义在R上的偶函数y=f(x),满足对任意t∈R都有f(t)=f(2﹣t),且x∈(0,1]时,f(x)=
,a=f(
),b=f(
),c=f(
),则( )
A.b<c<a
B.a<b<c
C.c<a<b
D.b<a<c
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
. (I)求函数f(x)的单调区间;
(II)若不等式f(x)>
恒成立,求整数k的最大值;
(III)求证:(1+1×2)(1+2×3)…(1+n(n×1))>e2n﹣3(n∈N*).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=mln(x+1)﹣nx在点(1,f(1))处的切线与y轴垂直,且
,其中 m,n∈R.
(Ⅰ)求m,n的值,并求出f(x)的单调区间;
(Ⅱ)设g(x)=﹣x2+2x,确定非负实数a的取值范围,使不等式f(x)+x≥ag(x)在[0,+∞)上恒成立.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com