【题目】已知全集
,
,
.
(1)若
,求
;
(2)若
,求实数
的取值范围.
【答案】(1)
;(2)
.
【解析】
(1)当a=1时,U=R,P={x|0<x<1},Q={x|﹣2≤x≤5},由此能求出UP和(UP)∩Q.
(2)由P={x|
a},Q={x|﹣2≤x≤5},P∩Q=P,得PQ,由此能求出实数a的取值范围.
(1)当a=1时,U=R,P={x|
1}={x|0<x<1},
Q={x|x2﹣3x≤10}={x|﹣2≤x≤5}.
UP={x|x≤0或x≥1},
∴(UP)∩Q={x|﹣2≤x≤0或1≤x≤5}.
(2)∵P={x|
a},Q={x|﹣2≤x≤5},P∩Q=P,
∴PQ,
当x>0时,P={x|0<x
},由PQ,得a
,
当x≤0时,PQ不成立.
综上,实数a的取值范围是[
,+∞).
科目:高中数学 来源: 题型:
【题目】在极坐标系中,过曲线
外的一点
(其中
,
为锐角)作平行于
的直线
与曲线分别交于
.
(Ⅰ) 写出曲线
和直线
的普通方程(以极点为原点,极轴为
轴的正半轴建系);
(Ⅱ)若
成等比数列,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数
,若在定义域内存在实数
,满足
,则称
为“
类函数”.
(1)已知函数
,试判断
是否为“
类函数”?并说明理由;
(2)设
是定义在
上的“
类函数”,求是实数
的最小值;
(3)若
为其定义域上的“
类函数”,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
(
,
),
,且函数
图像上的任意两条对称轴之间距离的最小值是
.
(1)求
的值和
的单调增区间;
(2)将函数
的图像向右平移
个单位后,得到函数
的图像,求函数
在
上的最值,并求取得最值时的
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设中心在原点,焦点在
轴上的椭圆
过点
,且离心率为
.
为
的右焦点,
为
上一点,
轴,
的半径为
.
(1)求
和
的方程;
(2)若直线
与
交于
两点,与
交于
两点,其中
在第一象限,是否存在
使
?若存在,求
的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(Ⅰ)若
的值域为
,求
的值;
(Ⅱ)巳
,是否存在这祥的实数
,使函数
在区间
内有且只有一个零点.若存在,求出
的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】水库的蓄水量随时间而变化,现用t表示时间,以月为单位,年初为起点(用t表示第t月份,
),根据历年数据,某水库的蓄水量V(单位:亿立方米)与时间t的近似函数关系为:当0<t≤10时,
;当10<t≤12时,
;若2月份该水库的蓄水量为33.6亿立方米.
(1)求实数a的值;
(2)求一年内该水库的最大蓄水量.
参考数据:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)当
时,求函数
在
处的切线方程;
(2)是否存在非负整数
,使得函数
是单调函数,若存在,求出
的值;若不存在,请说明理由;
(3)已知
,若存在
,使得当
时,
的最小值是
,求实数
的取值范围.(注:自然对数的底数
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列
的前
项和为
,对任意
,点
都在函数
的图象上.
(1)求
,归纳数列
的通项公式(不必证明).
(2)将数列
依次按
项、
项、
项、
项、
项循环地分为
,![]()
,
,
,各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为
,求
的值.
(3)设
为数列
的前
项积,若不等式
对一切
都成立,其中
,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com