精英家教网 > 高中数学 > 题目详情

【题目】如图,已知四棱锥的底面是等腰梯形,为等边三角形,且点P在底面上的射影为的中点G,点E在线段上,且.

1)求证:平面.

2)求二面角的余弦值.

【答案】1)证明见解析(2

【解析】

1)由等腰梯形的性质可证得,由射影可得平面,进而求证;

(2)取的中点F,连接,以G为原点,所在直线为x轴,所在直线为y轴,所在直线为z轴,建立空间直角坐标系,分别求得平面与平面的法向量,再利用数量积求解即可.

1)在等腰梯形中,

E在线段上,且,

E上靠近C点的四等分点,

,,,

,

P在底面上的射影为的中点G,连接,

平面,

平面,.

,平面,平面,

平面.

2)取的中点F,连接,以G为原点,所在直线为x轴,所在直线为y轴,所在直线为z轴,建立空间直角坐标系,如图所示,

由(1)易知,,,

,,

,为等边三角形,,

,,,,,

,,,,

设平面的法向量为,

,即,

,则,,,

设平面的法向量为,

,即,

,则,,,

设平面与平面的夹角为θ,则

二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一周岁生日开始,每年到银行储蓄元一年定期,若年利率为保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子18岁生日时不再存入,将所有存款(含利息)全部取回,则取回的钱的总数为  

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】流行性感冒(简称流感)是流感病毒引起的急性呼吸道感染,是一种传染性强、传播速度快的疾病.其主要通过空气中的飞沫、人与人之间的接触或与被污染物品的接触传播.流感每年在世界各地均有传播,在我国北方通常呈冬春季流行,南方有冬春季和夏季两个流行高峰.儿童相对免疫力低,在幼儿园、学校等人员密集的地方更容易被传染.某幼儿园将去年春期该园患流感小朋友按照年龄与人数统计,得到如下数据:

年龄(

患病人数(

1)求关于的线性回归方程;

2)计算变量的相关系数(计算结果精确到),并回答是否可以认为该幼儿园去年春期患流感人数与年龄负相关很强?(若,则相关性很强;若,则相关性一般;若,则相关性较弱.)

参考数据:

参考公式:

相关系数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“中国剩余定理”又称“孙子定理”,最早可见于中国南北朝时期的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”,原文如下:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何?现有这样一个相关的问题:将120202020个自然数中被5除余3且被7除余2的数按照从小到大的顺序排成一列,构成一个数列,则该数列各项之和为(

A.56383B.57171C.59189D.61242

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,单位圆上有一点,点以点为起点按逆时针方向以每秒弧度作圆周运动,点的纵坐标是关于时间的函数,记作.

1)当时,求

2)若将函数向左平移个单位长度后,得到的曲线关于轴对称,求的最小正值,并求此时的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂连续6天对新研发的产品按事先拟定的价格进行试销,得到一组数据如下表所示

日期

4月1日

4月2日

4月3日

4月4日

4月5日

4月6日

试销价

9

11

10

12

13

14

产品销量

40

32

29

35

44

(1)试根据4月2日、3日、4日的三组数据,求关于的线性回归方程,并预测4月6日的产品销售量

(2)若选取两组数据确定回归方程,求选取得两组数据恰好是不相邻两天的事件的概率.

参考公式:

其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为(其中为参数,.在极坐标系(以坐标原点为极点,以轴非负半轴为极轴)中,曲线的极坐标方程为.

1)求曲线的普通方程和曲线的直角坐标方程;

2)若曲线上恰有一个点到曲线的距离为1,求曲线的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设中心在原点,焦点在轴上的椭圆过点,且离心率为的右焦点,上一点,轴,的半径为

1)求的方程;

2)若直线交于两点,与交于两点,其中在第一象限,是否存在使?若存在,求的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数),其中

(Ⅰ)若,求的单调区间;

(Ⅱ)求零点的个数.

查看答案和解析>>

同步练习册答案