精英家教网 > 高中数学 > 题目详情

【题目】已知定义在上的奇函数,当时,.

1)求

2)当时,求的解析式.

3)若对任意的,不等式恒成立,求实数的取值范围.

【答案】1;(2;(3.

【解析】

1)由奇函数的定义得出的值;

2)设,可得,可计算出的表达式,再利用奇函数的定义可得出,即可得出的表达式;

3)分析函数上的单调性,由奇函数的性质将不等式化为,利用函数的单调性得出,可得出,求出函数的最小值可得出实数的取值范围.

1函数定义在上的奇函数,

2)当时,

函数是奇函数,

故当时,

3)由

时,,此时,函数为减函数,

.

由于函数是奇函数,则该函数在上也为减函数,

时,,又函数上是减函数,

,即恒成立,

对任意恒成立,

,则

故实数的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为F,过抛物线上一点P作抛物线的切线交x轴于点D,交y轴于Q点,当时,.

(1)判断的形状,并求抛物线的方程;

(2)若两点在抛物线上,且满足,其中点,若抛物线上存在异于的点H,使得经过三点的圆和抛物线在点处有相同的切线,求点H的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的焦点是椭圆 )的顶点,且椭圆与双曲线的离心率互为倒数.

(Ⅰ)求椭圆的方程;

(Ⅱ)设动点 在椭圆上,且,记直线轴上的截距为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底)。

(Ⅰ)求函数的单调区间;

(Ⅱ)若存在均属于区间,且,使,证明:

(Ⅲ)对于函数定义域内的任意实数,若存在常数,使得都成立,则称直线为函数的分界线。试探究当时,函数是否存在“分界线”?若存在,请给予证明,并求出的值;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题10分) 从3名男生和名女生中任选2人参加比赛。

①求所选2人都是男生的概率;

②求所选2人恰有1名女生的概率;

③求所选2人中至少有1名女生的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学对高三年级进行身高统计,测量随机抽取的20名学生的身高,其频率分布直方图如下(单位:cm

1)根据频率分布直方图,求出这20名学生身高中位数的估计值和平均数的估计值.

2)在身高为140—160的学生中任选2,求至少有一人的身高在150—160之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为更好地落实农民工工资保证金制度,南方某市劳动保障部门调查了年下半年该市名农民工(其中技术工、非技术工各名)的月工资,得到这名农民工月工资的中位数为百元(假设这名农民工的月工资均在(百元)内)且月工资收入在(百元)内的人数为,并根据调查结果画出如图所示的频率分布直方图:

(Ⅰ)求的值;

(Ⅱ)已知这名农民工中月工资高于平均数的技术工有名,非技术工有名,则能否在犯错误的概率不超过的前提下认为是不是技术工与月工资是否高于平均数有关系?

参考公式及数据:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

在直角坐标系中,点P到两点的距离之和等于4,设点P的轨迹为,直线C交于AB两点.

)写出C的方程;

)若,求k的值;

)若点A在第一象限,证明:当k>0时,恒有||>||

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用长为18 cm的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为21,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?

查看答案和解析>>

同步练习册答案