(本小题满分14分)在四棱锥P-ABCD中,∠ABC=∠ACD=90°,
∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2.
(1)求证:PC⊥
;
(2)求证:CE∥平面PAB;
(3)求三棱锥P-ACE的体积V.
(1) 略
(2) 略
(3) V=![]()
【解析】解:(1)在Rt△ABC中,AB=1,∠BAC=60°,
∴BC=
,AC=2.取
中点
,连AF, EF,
∵PA=AC=2,∴PC⊥
. (1分)
∵PA⊥平面ABCD,
平面ABCD,
∴PA⊥
,又∠ACD=90°,即
,
∴
,∴
,
∴
. (3分)
∴
.
(4分)
∴PC⊥
. (5分)
(2)证法一:取AD中点M,连EM,CM.则
EM∥PA.∵EM
平面PAB,PA
平面PAB,
∴EM∥平面PAB. (7分)
在Rt△ACD中,∠CAD=60°,AC=AM=2,
∴∠ACM=60°.而∠BAC=60°,∴MC∥AB.
∵MC
平面PAB,AB
平面PAB,
∴MC∥平面PAB. (9分)
∵EM∩MC=M,∴平面EMC∥平面PAB.
∵EC
平面EMC,∴EC∥平面PAB.
(10分)
证法二:延长DC、AB,设它们交于点N,连PN.
∵∠NAC=∠DAC=60°,AC⊥CD,∴C为ND的中点. (7分)
∵E为PD中点,∴EC∥PN. (9分)
∵EC
平面PAB,PN
平面PAB,∴EC∥平面PAB.
(10分)
(3)由(1)知AC=2,EF=CD, 且EF⊥平面PAC.
在Rt△ACD中,AC=2,∠CAD=60°,∴CD=2
,得EF=. (12分)
则V=
.
(14分)
科目:高中数学 来源: 题型:
| 3 |
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)设椭圆C1的方程为
(a>b>0),曲线C2的方程为y=
,且曲线C1与C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。
查看答案和解析>>
科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题
(本小题满分14分)
已知
=2,点(
)在函数
的图像上,其中
=
.
(1)证明:数列
}是等比数列;
(2)设
,求
及数列{
}的通项公式;
(3)记
,求数列{
}的前n项和
,并证明
.
查看答案和解析>>
科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第
天(
)的销售价格(单位:元)为
,第
天的销售量为
,已知该商品成本为每件25元.
(Ⅰ)写出销售额
关于第
天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知
的图像在点
处的切线与直线
平行.
⑴ 求
,
满足的关系式;
⑵ 若
上恒成立,求
的取值范围;
⑶ 证明:
(
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com