不等式
对一切
都成立,则
的取值范围是( )
A.
B.![]()
C.
D.![]()
科目:高中数学 来源: 题型:
(08年朝阳区综合练习一)(14分)
设数列
的前
项和为
,对一切
,点
都在函数
的图象上.
(Ⅰ)求
的值,猜想
的表达式,并用数学归纳法证明;
(Ⅱ)将数列
依次按1项、2项、3项、4项循环地分为(
),(
,
),(
,
,
),(
,
,
,
);(
),(
,
),(
,
,
),(
,
,
,
);(
),…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为
,求
的值;
(Ⅲ)设
为数列
的前
项积,是否存在实数
,使得不等式
对一切
都成立?若存在,求出
的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知数列
的前n项和为S??n,点
的直线
上,数列
满足
,
,且
的前9项和为153.
(Ⅰ)求数列
的通项公式;
(Ⅱ)设
,记数列
的前n项和为Tn,求使不等式
对
一切
都成立的最大正整数k的值.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年湖南省怀化市高三第一次模拟考试理科数学试卷(解析版) 题型:解答题
已知数列
的前
项和为
,点
在直线
上.数列
满足
,且
,前9项和为153.
(1)求数列
、
{的通项公式;
(2)设
,数列
的前
和为
,求使不等式
对一切
都成立的最大正整数
的值;
(3)设
,问是否存在
,使得
成立?若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源:2010-2011年安徽省高一下学期期中考试数学试卷 题型:解答题
(本小题满分13分)
已知数列
,其前
项和为
.
(1)求数列
的通项公式,并证明数列
是等差数列;
(2)如果数列
满足
,请证明数列
是等比数列;
(3)设
,数列
的前
项和为
,求使不等式
对一切
都成立的最大正整数
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com