【题目】【2018衡水金卷(三)】如图所示,在三棱锥
中,平面
平面
,
,
,
,
.
![]()
(I)证明:
平面
;
(II)若二面角
的平面角的大小为
,求直线
与平面
所成角的正弦值.
【答案】(I)见解析;(II)直线
与平面
所成角的正弦值为
.
【解析】【试题分析】(1)用余弦定理求得
,故三角形
为直角三角形,即
,根据面面垂直的性质定理可知
平面
,所以
,结合
可得
平面
.(2)过点
作
,垂足为
,连接
.易证得
即为直线
与平面
所成的角.计算的
的长度,两者相比即得到所求线面角的正弦值为![]()
【试题解析】
(1)在
中,因为
,
,
,
所以由余弦定理,可知![]()
,
所以
.故
,即有
.
又因为平面
平面
,且平面
平面
,
平面
,
所以
平面
.又
平面
,所以
.
又因为
,
,所以
平面
.
(2)过点
作
,垂足为
,连接
.
由(1),知
平面
,
平面
,
所以
.又
,所以
平面
,
因此
即为直线
与平面
所成的角.
又由(1)的证明,可知
平面
,
又
平面
,
平面
,所以
,
,
故
即为二面角
的平面角,即
.
故在
中,由
,得
.
在
中,
,
且
.
因此在
中,得
,
故直线
与平面
所成角的正弦值为
.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
为直角梯形,
,
,平面
底面
,
为
的中点,
是棱
上的点,
,
,
.
(Ⅰ)求证:平面
平面
;
(Ⅱ)若异面直线
与
所成角的余弦值为
,求
的值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
①设某大学的女生体重
与身高
具有线性相关关系,根据一组样本数据
,用最小二乘法建立的线性回归方程为
,则若该大学某女生身高增加
,则其体重约增加
;
②关于
的方程
的两根可分别作为椭圆和双曲线的离心率;
③过定圆
上一定点
作圆的动弦
,
为原点,若
,则动点
的轨迹为椭圆;
④已知
是椭圆
的左焦点,设动点
在椭圆上,若直线
的斜率大于
,则直线
(
为原点)的斜率的取值范围是
.
A. ①②③ B. ①③④ C. ①②④ D. ②③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中华民族是一个传统文化丰富多彩的民族,各民族有许多优良的传统习俗,如过大年吃饺子,元宵节吃汤圆,端午节吃粽子,中秋节吃月饼等等,让人们感受到浓浓的节目味道,某家庭过大年时包有大小和外观完全相同的肉馅饺子、蛋馅饺子和素馅饺子,一家4口人围坐在桌旁吃年夜饭,当晚该家庭吃饺子时每盘中混放8个饺子,其中肉馅饺子4个,蛋馅饺子和素馅饺子各2个,若在桌上上一盘饺子大家共同吃,记每个人第1次夹起的饺子中肉馅饺子的个数为
,若每个人各上一盘饺子,记4个人中第1次夹起的是肉馅饺子的人数为
,假设每个人都吃饺子,且每人每次都是随机地从盘中夹起饺子.
(1)求随机变量
的分布列;
(2)若
的数学期望分别记为
、
,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某产品生产厂家生产一种产品,每生产这种产品
(百台),其总成本为
万元
,其中固定成本为42万元,且每生产1百台的生产成本为15万元
总成本
固定成本
生产成本
销售收入
万元
满足
,假定该产品产销平衡
即生产的产品都能卖掉
,根据上述条件,完成下列问题:
写出总利润函数
的解析式
利润
销售收入
总成本
;
要使工厂有盈利,求产量
的范围;
工厂生产多少台产品时,可使盈利最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
且
.
(1)求实数
的值;
(2)判断函数
在区间
上的单调性,并用函数单调性的定义证明;
(3)求实数
的取值范围,使得关于
的方程
分别为:
①有且仅有一个实数解;②有两个不同的实数解;③有三个不同的实数解.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
,
,其中
.
(1)若
是关于
的不等式
的解,求
的取值范围;
(2)求函数
在
上的最小值;
(3)若对任意的
,不等式
恒成立,求
的取值范围;
(4)当
时,令
,试研究函数
的单调性,求
在该区间上的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com