【题目】已知三棱锥
中,
为等腰直角三角形,
,
平面
,且
,
且
,
分别为
的中点.
![]()
(1)求证:直线
平面
;
(2)求锐二面角
的余弦值.
科目:高中数学 来源: 题型:
【题目】过
轴正半轴上一点
做直线与抛物线
交于
,
,
两点,且满足
,过定点
与点
做直线
与抛物线交于另一点
,过点
与点
做直线
与抛物线交于另一点
.设三角形
的面积为
,三角形
的面积为
.
(1)求正实数
的取值范围;
(2)连接
,
两点,设直线
的斜率为
;
(ⅰ)当
时,直线
在
轴的纵截距范围为
,则求
的取值范围;
(ⅱ)当实数
在(1)取到的范围内取值时,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】新高考取消文理科,实行“3+3”,成绩由语文、数学、外语统一高考成绩和自主选考的3门普通高中学业水平考试等级性考试科目成绩构成.为了解各年龄层对新高考的了解情况,随机调查50人(把年龄在[15,45)称为中青年,年龄在[45,75)称为中老年),并把调查结果制成如表:
![]()
(1)请根据上表完成下面2×2列联表,并判断是否有95%的把握认为对新高考的了解与年龄(中青年、中老年)有关?
![]()
附:K2
.
![]()
(2)现采用分层抽样的方法从中老年人中抽取8人,再从这8人中随机抽取2人进行深入调查,求事件A:“恰有一人年龄在[45,55)”发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
,点A是直线
上的动点,过
作直线
,
,线段
的垂直平分线与
交于点
.
(1)求点
的轨迹
的方程;
(2)若点
,
是直线
上两个不同的点,且
的内切圆方程为
,直线
的斜率为
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若无穷数列
满足:存在
,对任意的
,都有
(
为常数),则称
具有性质![]()
(1)若无穷数列
具有性质
,且
,求
的值
(2)若无穷数列
是等差数列,无穷数列
是公比为正数的等比数列,
,
,
,判断
是否具有性质
,并说明理由.
(3)设无穷数列
既具有性质
,又具有性质
,其中
互质,求证:数列
具有性质![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃.下面叙述不正确的是 ( )
![]()
A. 各月的平均最低气温都在0℃以上
B. 七月的平均温差比一月的平均温差大
C. 三月和十一月的平均最高气温基本相同
D. 平均最高气温高于20℃的月份有5个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年末,武汉出现新型冠状病毒(
肺炎疫情,并快速席卷我国其他地区,传播速度很快.因这种病毒是以前从未在人体中发现的冠状病毒新毒株,目前没有特异治疗方法.防控难度很大.武汉市出现疫情最早,感染人员最多,防控压力最大,武汉市从2月7日起举全市之力入户上门排查确诊的新冠肺炎患者、疑似的新冠肺炎患者、无法明确排除新冠肺炎的发热患者和确诊患者的密切接触者等“四类”人员,强化网格化管理,不落一户、不漏一人.在排查期间,某社区将本社区的排查工作人员分为
,
两个小组,排查工作期间社区随机抽取了100户已排查户,进行了对排查工作态度是否满意的电话调查,根据调查结果统计后,得到如下
的列联表.
是否满意 组别 | 不满意 | 满意 | 合计 |
| 16 | 34 | 50 |
| 2 | 45 | 50 |
合计 | 21 | 79 | 100 |
(1)分别估计社区居民对
组、
组两个排查组的工作态度满意的概率;
(2)根据列联表的数据,能否有
的把握认为“对社区排查工作态度满意”与“排查工作组别”有关?
附表:
|
|
|
|
|
|
|
|
|
|
|
|
附:![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com