精英家教网 > 高中数学 > 题目详情

n为正整数,f(n)=1++++,计算得f(2)=,f(4)>2,

f(8)>,f(16)>3,观察上述结果,可推测一般的结论为 . 

 

【答案】

f(2n)(nN*)

【解析】f(2)=f(21)=,f(4)=f(22)>2=,

f(8)=f(23)>=,f(16)=f(24)>3=,,

f(2n)(nN*).

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设n为正整数,f(n)=1+
1
2
+
1
3
+…+
1
n
计算得f(2)=
3
2
,f(4)≥2,f(8)≥
5
2
,f(16)≥3观察上述结果可推测一般结论是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•惠州模拟)设n为正整数,规定:fn(x)=
f{f[…f(x)]}
n个f
,已知f(x)=
2(1-x),0≤x≤1
x-1,1<x≤2

(1)解不等式f(x)≤x;
(2)设集合A={0,1,2},对任意x∈A,证明:f3(x)=x;
(3)求f2007(
8
9
)
的值;
(4)若集合B={x|f12(x)=x,x∈[0,2]},证明:B中至少包含8个元素.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:设函数y=f(x)在(a,b)内可导,f'(x)为f(x)的导数,f''(x)为f'(x)的导数即f(x)的二阶导数,若函数y=f(x) 在(a,b)内的二阶导数恒大于等于0,则称函数y=f(x)是(a,b)内的下凸函数(有时亦称为凹函数).已知函数f(x)=xlnx
(1)证明函数f(x)=xlnx是定义域内的下凸函数,并在所给直角坐标系中画出函数f(x)=xlnx的图象;
(2)对?x1,x2∈R+,根据所画下凸函数f(x)=xlnx图象特征指出x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]与x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]的大小关系;
(3)当n为正整数时,定义函数N (n)表示n的最大奇因数.如N (3)=3,N (10)=5,….记S(n)=N(1)+N(2)+…+N(2n),若
2n
i=1
xi=1
,证明:
2n
i=1
xilnxi≥-ln2n
ln
1
3S(n)-2
(i,n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

设n为正整数,f(n)=1+
1
2
+
1
3
+…+
1
n
,经计算得f(2)=
3
2
,f(4)>2,f(8)>
5
2
f(16)>3,f(32)>
7
2
,观察上述结果,对任意正整数n,可推测出一般结论是
 

查看答案和解析>>

同步练习册答案