【题目】已知
,直线
经过定点
,直线
经过定点
,且
与
相交于
点,这两条直线与两坐标轴围成的四边形面积为
.
(1)证明:
,并求定点
、
的坐标;
(2)求三角形
面积最大值,以及
时的
.
【答案】(1)证明见解析,
,
;(2)三角形
面积最大值为
,
.
【解析】
(1)先由
得到
,即可求出
;再由
得到
,即可求出
;根据两直线的斜率之积,即可判断直线垂直;
(2)先分别记点
到直线
的距离为
、点
到直线
的距离为
,由点到直线距离公式求出
,
,表示出
,根据基本不等式求出最值,再由
,结合极限的运算,即可得出结果.
(1)因为
可化为
,因此易知
过点
,即
;
由
可得:
,因此直线
过点
;
又
,直线
的斜率为
;直线
的斜率为
;所以
,因此
;
(2)分别记点
到直线
的距离为
、点
到直线
的距离为
,
则
,
,
由(1)可得:
,
所以
,
令
,
,
,所以
,
;
当
时,
;当
时,
;
当
时,则
,
当且仅当
,即
,即
时,等号成立,
又
,
,当
时,
;当
时,
;
综上三角形
面积最大值为
;
又两条直线与两坐标轴围成的四边形面积为
;
所以
.
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的左右焦点分别是
,抛物线
与椭圆
有相同的焦点,点
为抛物线与椭圆
在第一象限的交点,且满足
.
![]()
(1)求椭圆
的方程;
(2)过点
作直线
与椭圆
交于
两点,设
.若
,求
面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
满足
是数列
的前
项的和.
(1)求数列
的通项公式;
(2)若
成等差数列,
,18,
成等比数列,求正整数
的值;
(3)是否存在
,使得
为数列
中的项?若存在,求出所有满足条件的
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法错误的是( )
A.命题“若
,则
”的逆否命题为:“若
,则
”
B.“
”是“
”的充分而不必要条件
C.若
且
为假命题,则
、
均为假命题
D.命题
“存在
,使得
”,则非
“任意
,均有
”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设命题
:函数
的定义域为
;命题
:关于
的方程
有实根.
(1)如果
是真命题,求实数
的取值范围.
(2)如果命题“
”为真命题,且“
”为假命题,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】世界卫生组织的最新研究报告显示,目前中国近视患者人数多达6亿,高中生和大学生的近视率均已超过七成,为了研究每周累计户外暴露时间(单位:小时)与近视发病率的关系,对某中学一年级200名学生进行不记名问卷调查,得到如下数据:
每周累积户外暴露时间(单位:小时) |
|
|
|
| 不少于28小时 |
近视人数 | 21 | 39 | 37 | 2 | 1 |
不近视人数 | 3 | 37 | 52 | 5 | 3 |
(1)在每周累计户外暴露时间不少于28小时的4名学生中,随机抽取2名,求其中恰有一名学生不近视的概率;
(2)若每周累计户外暴露时间少于14个小时被认证为“不足够的户外暴露时间”,根据以上数据完成如下列联表,并根据(2)中的列联表判断能否在犯错误的概率不超过0.01的前提下认为不足够的户外暴露时间与近视有关系?
近视 | 不近视 | |
足够的户外暴露时间 | ||
不足够的户外暴露时间 |
附:![]()
P | 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,正方体ABCD﹣A′B′C′D′的棱长为1,E,F分别是棱AA′,CC′的中点,过直线E,F的平面分别与棱BB′、DD′交于M,N,设BM=x,x∈[0,1],给出以下四个命题:
①平面MENF⊥平面BDD′B′;
②当且仅当x=
时,四边形MENF的面积最小;
③四边形MENF周长L=f(x),x∈[0,1]是单调函数;
④四棱锥C′﹣MENF的体积V=h(x)为常函数;
以上命题中假命题的序号为( )
![]()
A. ①④B. ②C. ③D. ③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
(
为参数),以坐标原点为极点,
轴为极轴建立极坐标系,曲线
的极坐标为
.
(1)求曲线
的普通方程和曲线
的直角坐标方程;
(2)若曲线
和曲线
有三个公共点,求以这三个公共点为顶点的三角形的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com