【题目】设双曲线方程为
,过其右焦点且斜率不为零的直线
与双曲线交于A,B两点,直线
的方程为
,A,B在直线
上的射影分别为C,D.
(1)当
垂直于x轴,
时,求四边形
的面积;
(2)
,
的斜率为正实数,A在第一象限,B在第四象限,试比较
与1的大小;
(3)是否存在实数
,使得对满足题意的任意
,直线
和直线
的交点总在
轴上,若存在,求出所有的
值和此时直线
和
交点的位置;若不存在,请说明理由.
【答案】(1)
;(2)
;(3)
存在,
,此时两直线的交点为
.
【解析】
(1))当
垂直于x轴,直线
方程为
,四边形
为矩形,将
代入双曲线方程,求出
坐标,得出
,即可求解;
(2)设
的方程为
,
,设
两点的纵坐标分别为
,将
的方程与双曲线方程联立,得到关于
的方程,根据韦达定理得出
关系,结合
,
,
,将根据线段长公式化简
,
再利用点
在双曲线上可得
,由
,
即可得出结论;
(3)设
,
,则
,
,求出直线
和直线
的方程,利用两条直线相交在
轴上,可得
,将
关系,代入,得
对一切
都成立,有
,求出交点的横坐标,即可求解.
(1)右焦点的坐标为
.故
.
联立
解得
.故
,
又
,故四边形
的面积为
;
(2)设
的方程为
,这里
.
将
的方程与双曲线方程联立,得到
,即
.
由
知
,此时,
![]()
由于
,故
,
即
,故
,因此
;
(3)由(2)得
.(有两交点表示
)
设
,
,则
,
.
的绝对值不小于
,故
,且
.
又因直线斜率不为零,故
.
直线
的方程为
.
直线
的方程为
.
若这两条直线的交点在
轴上,则当
时,
两方程的
应相同,即
.
故
,
即
.
现
,
,
代入上式,得
对一切
都成立.
即
,
.
此时交点的横坐标为![]()
.
综上,
存在,
,此时两直线的交点为
.
![]()
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
,
,直线l与椭圆C交于P,Q两点,且点M满足
.
(1)若点
,求直线
的方程;
(2)若直线l过点
且不与x轴重合,过点M作垂直于l的直线
与y轴交于点
,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)设
是
的反函数.当
时,解不等式
;
(2)若关于
的方程
的解集中恰好有一个元素,求实数
的值;
(3)设
,若对任意
,函数
在区间
上的最大值与最小值的差不超过
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
的前
项和为
,且
,
(
).
(1)计算
,
,
,
,并求数列
的通项公式;
(2)若数列
满足
,求证:数列
是等比数列;
(3)由数列
的项组成一个新数列
:
,
,
,
,
,设
为数列
的前
项和,试求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三棱锥
中,BO、AO、CO所在直线两两垂直,且AO=CO,∠BAO=60°,E是AC的中点,三棱锥
的体积为![]()
![]()
(1)求三棱锥
的高;
(2)在线段AB上取一点D,当D在什么位置时,
和
的夹角大小为 ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论中:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°.
其中正确的有____________(把所有正确的序号都填上).
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列
的前
项和为
,若
,则称
是“
数列”.
(1)若
是“
数列”,且
,
,
,
,求
的取值范围;
(2)若
是等差数列,首项为
,公差为
,且
,判断
是否为“
数列”;
(3)设数列
是等比数列,公比为
,若数列
与
都是“
数列”,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
,
为实数),
.
(1)若函数
的最小值是
,求
的解析式;
(2)在(1)的条件下,
在区间
上恒成立,试求
的取值范围;
(3)若
,
为偶函数,实数
,
满足
,
,定义函数
,试判断
值的正负,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对某居民最近连续几年的月用水量进行统计,得到该居民月用水量
(单位:吨)的频率分布直方图,如图一.
![]()
(1)求
的值,并根据频率分布直方图估计该居民月平均用水量
;
(2)已知该居民月用水量
与月平均气温
(单位:℃)的关系可用回归直线
模拟.2019年当地月平均气温
统计图如图二,把2019年该居民月用水量高于和低于
的月份作为两层,用分层抽样的方法选取5个月,再从这5个月中随机抽取2个月,求这2个月中该居民恰有1个月用水量超过
的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com