精英家教网 > 高中数学 > 题目详情
在△ABC中,角A,B,C所对应的边分别为a,b,c,已知cosC=-
1
4

(Ⅰ)求sin
C
2
的值;
(Ⅱ)若ab=6,且sin2A+sin2B=
13
16
sin2C,求a,b,c的值.
分析:(Ⅰ)利用二倍角的余弦函数公式化简cosC,根据C为钝角得到
C
2
为锐角,开方即可求sin
C
2
的值;
(Ⅱ)已知第二个等式利用正弦定理化简,再利用余弦定理列出关系式,联立表示出c2,将ab的值代入计算求出c与a2+b2的值,即可确定出a,b及c的值.
解答:解:(Ⅰ)∵cosC=1-2sin2
C
2
,cosC=-
1
4
<0,
∴sin2
C
2
=
1-cosC
2
=
1-(-
1
4
)
2
=
5
8

∵C为钝角,∴
C
2
为锐角,
则sin
C
2
=
10
4

(Ⅱ)∵sin2A+sin2B=
13
16
sin2C,
∴由正弦定理得:a2+b2=
13
16
c2
又由余弦定理得:c2=a2+b2-2abcosC,即a2+b2=c2-
1
2
ab②
由①、②得c2=
8
3
ab,
∵ab=6,
∴c=4,a2+b2=13,
解得:
a=2
b=3
a=3
b=2

∴a、b、c的值a=2,b=3,c=4或a=3,b=2,c=4.
点评:此题考查了正弦、余弦定理,二倍角的余弦函数公式,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,则下列关系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D为BC的中点,求△ABC的面积及AD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c并且满足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对边的长分别为a,b,c,且a=
5
,b=3,sinC=2sinA
,则sinA=
 

查看答案和解析>>

同步练习册答案