【题目】已知数列{an}的各项均为正数,其前n项和Sn满足4Sn=an2+2an,n∈N*.设bn=(﹣1)nanan+1,Tn为数列{bn}的前n项和,则T2n=_____.
【答案】8n(n+1)
【解析】
由数列的递推式:当n=1时,a1=S1;n≥2时,an=Sn﹣Sn﹣1,结合等差数列的通项公式和求和公式,化简整理可得所求和.
数列{an}的各项均为正数,其前n项和Sn满足4Sn=a
2an,n∈N*.
可得n=1时,4a1=4S1=a12+2a1,解得a1=2,
n≥2时,4Sn﹣1=an﹣12+2an﹣1,又4Sn=an2+2an,
相减可得4an=an2+2an﹣an﹣12﹣2an﹣1,
化为(an+an﹣1)(an﹣an﹣1﹣2)=0,
由an>0,可得an﹣an﹣1=2,
则an=2+2(n﹣1)=2n,
bn=(﹣1)nanan+1=(﹣1)n4n(n+1),
可得T2n=4[﹣1×2+2×3﹣3×4+4×5﹣5×6+6×7﹣…﹣(2n﹣1)(2n)+(2n)(2n+1)]
=4(2×2+2×4+2×6+…+2×2n)=8
n(2+2n)=8n(n+1).
故答案为:8n(n+1).
科目:高中数学 来源: 题型:
【题目】若数列
与函数
满足:①
的任意两项均不相等,且
的定义域为
;②数列
的前
的项的和
对任意的
都成立,则称
与
具有“共生关系”.
(1)若
,试写出一个与数列
具有“共生关系”的函数
的解析式;
(2)若
与数列
具有“共生关系”,求实数对
所构成的集合,并写出
关于
,
,
的表达式;
(3)若
,求证:“存在每项都是正数的无穷等差数列
,使得
与
具有‘共生关系’”的充要条件是“点
在射线
上”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】人口平均预期寿命是综合反映人们健康水平的基本指标.
年第六次全国人口普查资料表明,随着我国社会经济的快速发展,人民生活水平的不断提高以及医疗卫生保障体系的逐步完善,我国人口平均预期寿命继续延长,国民整体健康水平有较大幅度的提高.下图体现了我国平均预期寿命变化情况,依据此图,下列结论错误的是( )
![]()
A.男性的平均预期寿命逐渐延长
B.女性的平均预期寿命逐渐延长
C.男性的平均预期寿命延长幅度略高于女性
D.女性的平均预期寿命延长幅度略高于男性
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四面体ABCD中,△ABC和△BCD均是边长为1的等边三角形,已知四面体ABCD的四个顶点都在同一球面上,且AD是该球的直径,则四面体ABCD的体积为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“未来肯定是非接触的,无感支付的方式将成为主流,这有助于降低交互门槛”.云从科技联合创始人姚志强告诉南方日报记者.相对于主流支付方式二维码支付,刷脸支付更加便利,以前出门一部手机解决所有,而现在连手机都不需要了,毕竟,手机支付还需要携带手机,打开二维码也需要时间和手机信号.刷脸支付将会替代手机,成为新的支付方式.某地从大型超市门口随机抽取50名顾客进行了调查,得到了如表列联表:
![]()
(1)请将上面的列联表补充完整,并判断是否有
的把握认为使用刷脸支付与性别有关?
(2)从参加调查且使用刷脸支付的顾客中随机抽取2人参加抽奖活动,抽奖活动规则如下:“一等奖”中奖概率为0.25,奖品为10元购物券
张(
,且
),“二等奖”中奖概率0.25,奖品为10元购物券两张,“三等奖”中奖概率0.5,奖品为10元购物券一张,每位顾客是否中奖相互独立,记参与抽奖的两位顾客中奖购物券金额总和为
元,若要使
的均值不低于50元,求
的最小值.
附:
,其中
.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=axex,g(x)=x2+2x+b,若曲线y=f(x)与曲线y=g(x)都过点P(1,c).且在点P处有相同的切线l.
(Ⅰ)求切线l的方程;
(Ⅱ)若关于x的不等式k[ef(x)]≥g(x)对任意x∈[﹣1,+∞)恒成立,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
的极坐标方程为
,直线
的参数方程为
(
为参数).
(Ⅰ)求曲线
的参数方程与直线
的普通方程;
(Ⅱ)设点
为曲线
上的动点,点
和点
为直线
上的点,且
.求
面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线C的参数方程为
为参数),以原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线D的极坐标方程为
.
(1)写出曲线C的极坐标方程以及曲线D的直角坐标方程;
(2)若过点
(极坐标)且倾斜角为
的直线l与曲线C交于M,N两点,弦MN的中点为P,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,
平面
,正方形
边长为2,
是
的中点.
![]()
(1)求证:
平面
;
(2)求证:直线
与平面
所成角的正弦值为
,求
的长度;
(3)若
,线段
上是否存在一点
,使
平面
,若存在求
的长度,若不存在则说明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com