精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}的各项均为正数,其前n项和Sn满足4Snan2+2annN*.bn=(﹣1nanan+1Tn为数列{bn}的前n项和,则T2n_____.

【答案】8nn+1

【解析】

由数列的递推式:当n1时,a1S1n≥2时,anSnSn1,结合等差数列的通项公式和求和公式,化简整理可得所求和.

数列{an}的各项均为正数,其前n项和Sn满足4Sna2annN*.

可得n1时,4a14S1a12+2a1,解得a12

n≥2时,4Sn1an12+2an1,又4Snan2+2an

相减可得4anan2+2anan122an1

化为(an+an1)(anan12)=0

an0,可得anan12

an2+2n1)=2n

bn=(﹣1nanan+1=(﹣1n4nn+1),

可得T2n4[1×2+2×33×4+4×55×6+6×7﹣(2n1)(2n+2n)(2n+1]

42×2+2×4+2×6+…+2×2n)=8n2+2n)=8nn+1.

故答案为:8nn+1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若数列与函数满足:①的任意两项均不相等,且的定义域为;②数列的前的项的和对任意的都成立,则称具有“共生关系”.

1)若,试写出一个与数列具有“共生关系”的函数的解析式;

2)若与数列具有“共生关系”,求实数对所构成的集合,并写出关于的表达式;

3)若,求证:“存在每项都是正数的无穷等差数列,使得具有‘共生关系’”的充要条件是“点在射线上”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】人口平均预期寿命是综合反映人们健康水平的基本指标.年第六次全国人口普查资料表明,随着我国社会经济的快速发展,人民生活水平的不断提高以及医疗卫生保障体系的逐步完善,我国人口平均预期寿命继续延长,国民整体健康水平有较大幅度的提高.下图体现了我国平均预期寿命变化情况,依据此图,下列结论错误的是(

A.男性的平均预期寿命逐渐延长

B.女性的平均预期寿命逐渐延长

C.男性的平均预期寿命延长幅度略高于女性

D.女性的平均预期寿命延长幅度略高于男性

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四面体ABCD中,ABCBCD均是边长为1的等边三角形,已知四面体ABCD的四个顶点都在同一球面上,且AD是该球的直径,则四面体ABCD的体积为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“未来肯定是非接触的,无感支付的方式将成为主流,这有助于降低交互门槛”.云从科技联合创始人姚志强告诉南方日报记者.相对于主流支付方式二维码支付,刷脸支付更加便利,以前出门一部手机解决所有,而现在连手机都不需要了,毕竟,手机支付还需要携带手机,打开二维码也需要时间和手机信号.刷脸支付将会替代手机,成为新的支付方式.某地从大型超市门口随机抽取50名顾客进行了调查,得到了如表列联表:

1)请将上面的列联表补充完整,并判断是否有的把握认为使用刷脸支付与性别有关?

2)从参加调查且使用刷脸支付的顾客中随机抽取2人参加抽奖活动,抽奖活动规则如下:“一等奖”中奖概率为0.25,奖品为10元购物券张(,且),“二等奖”中奖概率0.25,奖品为10元购物券两张,“三等奖”中奖概率0.5,奖品为10元购物券一张,每位顾客是否中奖相互独立,记参与抽奖的两位顾客中奖购物券金额总和为元,若要使的均值不低于50元,求的最小值.

附:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=axexgx)=x2+2x+b,若曲线yfx)与曲线ygx)都过点P1c).且在点P处有相同的切线l

(Ⅰ)求切线l的方程;

(Ⅱ)若关于x的不等式k[efx]≥gx)对任意x[1+∞)恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的极坐标方程为,直线的参数方程为为参数).

(Ⅰ)求曲线的参数方程与直线的普通方程;

(Ⅱ)设点为曲线上的动点,点和点为直线上的点,且.面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线C的参数方程为为参数),以原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线D的极坐标方程为.

1)写出曲线C的极坐标方程以及曲线D的直角坐标方程;

2)若过点(极坐标)且倾斜角为的直线l与曲线C交于MN两点,弦MN的中点为P,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,正方形边长为2的中点.

1)求证:平面

2)求证:直线与平面所成角的正弦值为,求的长度;

3)若,线段上是否存在一点,使平面,若存在求的长度,若不存在则说明.

查看答案和解析>>

同步练习册答案