【题目】O为坐标原点,直线l与圆x2+y2=2相切.
(1)若直线l分别与x、y轴正半轴交于A、B两点,求△AOB面积的最小值及面积取得最小值时的直线l的方程.
(2)设直线l交椭圆
=1于P、Q两点,M为PQ的中点,求|OM|的取值范围.
【答案】
(1)解:设直线l的方程为
=1(a,b>0),
由直线和圆x2+y2=4相切,可得
=
,
即有
=
≥
,即ab≥4,
当且仅当a=b=2时,取得等号.
则△AOB面积S=
ab的最小值为2;
此时直线的方程为x+y﹣2=0
(2)解:若直线的斜率不存在,设为x=t,
由直线和圆相切可得,t=﹣
或
.
代入椭圆方程可得,y=±
,
可得中点M坐标为(﹣
,0)或(
,0),|OM|=
;
设直线l的方程为y=kx+m,代入椭圆方程可得,
(1+2k2)x2+4kmx+2m2﹣6=0,
△=16k2m2﹣4(1+2k2)(2m2﹣6)>0,
即为m2<3+6k2,
由直线和圆相切,可得
=
,
即为m2=2+2k2,由2+2k2<3+6k2,可得k∈R,
设P,Q的坐标为(x1,y1),(x2,y2),
可得x1+x2=﹣
,中点M的坐标为(﹣
,
),
即有|OM|=
= ![]()
设1+2k2=t(t≥1),则|OM|=
= ![]()
=
,由t≥1可得t=2取得最大值
,
t=1时,取得最小值
.
故|OM|的范围是[
,
]
【解析】(1)设出直线方程,由直线和圆相切的条件:d=r,结合基本不等式,即可得到面积的最小值和此时直线的方程;(2)讨论直线的斜率不存在和存在,设出直线方程为y=kx+m,代入椭圆方程,运用韦达定理和中点坐标公式,结合判别式大于0,化简整理即可得到所求范围.
科目:高中数学 来源: 题型:
【题目】如图,在矩形
中
,E为
的中点,将
沿
翻折到
的位置,
平面
,
为
的中点,则在翻折过程中,下列结论正确的是( )
![]()
A.恒有
平面![]()
B.B与M两点间距离恒为定值
C.三棱锥
的体积的最大值为![]()
D.存在某个位置,使得平面
⊥平面![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
已知
是递增数列,其前
项和为
,
,且
,
.
(Ⅰ)求数列
的通项
;
(Ⅱ)是否存在
使得
成立?若存在,写出一组符合条件的
的值;若不存在,请说明理由;
(Ⅲ)设
,若对于任意的
,不等式
恒成立,求正整数
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某保险公司开设的某险种的基本保费为
万元,今年参加该保险的人来年继续购买该险种的投保人称为续保人,续保人的下一年度的保费与其与本年度的出险次数的关联如下:
本年度出险次数 |
|
|
|
|
|
|
下一次保费(单位:万元) |
|
|
|
|
|
|
设今年初次参保该险种的某人准备来年继续参保该险种,且该参保人一年内出险次数的概率分布列如下:
一年内出险次数 |
|
|
|
|
|
|
概率 |
|
|
|
|
|
|
(
)求此续保人来年的保费高于基本保费的概率.
(
)若现如此续保人来年的保费高于基本保费,求其保费比基本保费高出
的概率.
(
)求该续保人来年的平均保费与基本保费的比值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我市物价监督部门为调研某公司新开发上市的一种产品销售价格的合理性,对该公司的产品的销售与价格进行了统计分析,得到如下数据和散点图:
定价 | 10 | 20 | 30 | 40 | 50 | 60 |
年销售 | 1150 | 643 | 424 | 262 | 165 | 86 |
| 14.1 | 12.9 | 12.1 | 11.1 | 10.2 | 8.9 |
![]()
图(1)为
散点图,图(2)为
散点图.
(Ⅰ)根据散点图判断
与
,
与
哪一对具有较强的线性相关性(不必证明);
(Ⅱ)根据(Ⅰ)的判断结果和参考数据,建立
关于
的回归方程(线性回归方程中的斜率和截距均保留两位有效数字);
(Ⅲ)定价为多少时,年销售额的预报值最大?(注:年销售额
定价
年销售)
参考数据:
,
,
,
,
,
,
,
,
参考公式:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4﹣4:极坐标与参数方程
极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知曲线C1的极坐标方程为
,曲线C2的极坐标方程为ρsinθ=a(a>0),射线
,
与曲线C1分别交异于极点O的四点A,B,C,D.
(Ⅰ)若曲线C1关于曲线C2对称,求a的值,并把曲线C1和C2化成直角坐标方程;
(Ⅱ)求|OA||OC|+|OB||OD|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,
是椭圆上一点.
(1)求椭圆的标准方程;
(2)过椭圆右焦点
的直线与椭圆交于
两点,
是直线
上任意一点.证明:直线
的斜率成等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,AB是圆O的直径,C为圆周上一点,过C作圆O的切线l,过A作直线l的垂线AD,D为垂足,AD与圆O交于点E. ![]()
(1)求证:ABDE=BCCE;
(2)若AB=8,BC=4,求线段AE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com