精英家教网 > 高中数学 > 题目详情

【题目】已知两定点 ,曲线上的动点满足,直线与曲线的另一个交点为

)求曲线的标准方程;

)设点,若,求直线的方程.

【答案】(Ⅰ)(Ⅱ)

【解析】试题分析:(Ⅰ)由题意知|MF1|+|MF2|=2|F1F2|=8>4,所以曲线C是以F1,F2为焦点,长轴长为8的椭圆.由此可知曲线C的方程;(Ⅱ)设M(xM,yM),P(xP,yP),直线MN方程为y=k(x+4),其中k≠0.由得(3+4k2)y2-24ky=0,由此利用韦达定理、椭圆性质,结合已知条件,所以,则,转化为坐标关系求出点坐标代入椭圆即可.

试题解析:

(Ⅰ)∵

∴曲线是以 为焦点,长轴长为的椭圆.

曲线的方程为

(Ⅱ)由题意知直线不垂直于轴,也不与轴重合或平行.

,直线方程为,其中

,得

解得

依题意

因为

所以,则

于是,所以

因为点在椭圆上,所以

整理得

解得(舍去),

从而

所以直线的方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知:sin230°+sin290°+sin2150°=
sin25°+sin265°+sin2125°=
sin212°+sin272°+sin2132°=
通过观察上述两等式的规律,请你写出一般性的命题,并给予的证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的多面体,它的正视图为直角三角形,侧视图为正三角形,俯视图为正方形(尺寸如图所示),E为VB的中点.
(1)求证:VD∥平面EAC;
(2)求二面角A﹣VB﹣D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=a,an+1= (n∈N*).
(1)求a2 , a3 , a4
(2)猜测数列{an}的通项公式,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若曲线在点处的切线方程为,求ab的值;

2)如果是函数的两个零点, 为函数的导数,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域是D,若存在常数m、M,使得m≤f(x)≤M对任意x∈D成立,则称函数f(x)是D上的有界函数,其中m称为函数f(x)的下界,M称为函数f(x)的上界;特别地,若“=”成立,则m称为函数f(x)的下确界,M称为函数f(x)的上确界. (Ⅰ)判断 是否是有界函数?说明理由;
(Ⅱ)若函数f(x)=1+a2x+4x(x∈(﹣∞,0))是以﹣3为下界、3为上界的有界函数,求实数a的取值范围;
(Ⅲ)若函数 ,T(a)是f(x)的上确界,求T(a)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=asinx﹣bcosx(a,b为常数,a≠0,x∈R)在x= 处取得最大值,则函数y=f(x+ )是(
A.奇函数且它的图象关于点(π,0)对称
B.偶函数且它的图象关于点( ,0)对称
C.奇函数且它的图象关于点( ,0)对称
D.偶函数且它的图象关于点(π,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的单调函数f(x)满足:f(x+y)=f(x)+f(y),若F(x)=f(asinx)+f(sinx+cos2x﹣3)在(0,π)上有零点,则a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设z1=2x+1+(x2﹣3x+2)i,z2=x2﹣2+(x2+x﹣6)i(x∈R).
(1)若z1是纯虚数,求实数x的取值范围;
(2)若z1>z2 , 求实数x的取值范围.

查看答案和解析>>

同步练习册答案