【题目】(本题共12分)已知函数
(1)讨论
的单调性;
(2)是否存在常数
,使
对任意的
和任意的
都成立,若存在,求出t的取值范围;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】椭圆
中心在原点,焦点在
轴上,
、
分别为上、下焦点,椭圆的离心率为
,
为椭圆上一点且
.
(1)若
的面积为
,求椭圆
的标准方程;
(2)若
的延长线与椭圆
另一交点为
,以
为直径的圆过点
,
为椭圆上动点,求
的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经销商经销某种农产品,在一个销售季度内,每售出
该产品获利润500元,未售出的产品,每
亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了
该农产品.以
(单位:
)表示下一个销售季度内的市场需求量,
(单位:元)表示下一个销售季度内经销该农产品的利润.
![]()
(1)将
表示为
的函数;
(2)根据直方图估计利润
不少于57000元的概率;
(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量
,则取
,且
的概率等于需求量落入
的频率),求
的数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
在R上可导,其导函数为
且函数
的图像如图所示,则下列结论一定成立的是( ) ![]()
A.函数
的极大值是
,极小值是
B.函数
的极大值是
,极小值是
C.函数
的极大值是
,极小值是
D.函数
的极大值是
,极小值是
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正三棱柱
的各条棱长均相等,
为
的中点,
分别是线段
和线段
上的动点(含端点),且满足
.当
运动时,下列结论中不正确的是( )
![]()
A. 平面
平面
B. 三棱锥
的体积为定值
C.
可能为直角三角形 D. 平面
与平面
所成的锐二面角范围为![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似地服从正态分布N(70,100).已知成绩在90分以上的学生有12人.
(1)试问此次参赛学生的总数约为多少人?
(2)若成绩在80分以上(含80分)为优,试问此次竞赛成绩为优的学生约为多少人?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
,其前
项和为
.
(1)若对任意的
,
,
,
组成公差为4的等差数列,且
,求
;
(2)若数列
是公比为
(
)的等比数列,
为常数,
求证:数列
为等比数列的充要条件为
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com