【题目】对于函数
,若存在正实数
,对于任意
,都有
,则称函数
在
上是有界函数,下列函数:
①
;②
;③
;④
;
其中在
上是有界函数的序号为________.
科目:高中数学 来源: 题型:
【题目】给出下列三个命题:
①若
,则
或
的逆命题;
②若
,则
的逆否命题;
③若
、
,
是奇数,则
、
中一个是奇数,一个是偶数.
其中真命题的个数为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图已知椭圆
,
是长轴的一个端点,弦
过椭圆的中心
,且
,
.
![]()
(Ⅰ)求椭圆的方程:
(Ⅱ)设
为椭圆上异于
且不重合的两点,且
的平分线总是垂直于
轴,是否存在实数
,使得
,若存在,请求出
的最大值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
(
)的左、右焦点分别是
,
,点
为
的上顶点,点
在
上,
,且
.
(1)求
的方程;
(2)已知过原点的直线
与椭圆
交于
,
两点,垂直于
的直线
过
且与椭圆
交于
,
两点,若
,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某水域受到污染,水务部门决定往水中投放一种药剂来净化水质,已知每次投放质量为
的药剂后,经过
(
)天,该药剂在水中释放的浓度
(毫克
升)为
,其中
,当药剂在水中释放浓度不低于
(毫克
升)时称为有效净化,当药剂在水中释放的浓度不低于
(毫克
升)且不高于
(毫克
升)时称为最佳净化.
(1)如果投放的药剂质量为
,那么该水域达到有效净化一共可持续几天?
(2)如果投放的药剂质量为
,为了使该水域
天(从投放药剂算起,包括第
天)之内都达到最佳净化,确定应该投放的药剂质量
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)的图象与函数h(x)=x+
+2的图象关于点A(0,1)对称.
(1)求函数f(x)的解析式;
(2)若g(x)=f(x)+
,g(x)在区间(0,2]上的值不小于6,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种商品原来每件售价为25元,年销售量8万件.
(1)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?
(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到
元.公司拟投入
万元作为技改费用,投入50万元作为固定宣传费用,投入
万元作为浮动宣传费用.试问:当该商品明年的销售量a至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某微信群主发60个随机红包(即每个人抢到的红包中的钱数是随机的,且每人只能抢一个),红包被一抢而空,后据统计,60个红包中的钱数(单位:元)分配如下频率分布直方图所示(其分组区间为
,
,
,
,
).
![]()
(1)求频率分布直方图中
的值及红包钱数的平均值;
(2)试估计该群中某成员抢到钱数不小于3元的概率;
(3)若该群中成员甲、乙两人都抢到4.5元红包,现系统将从抢到4元及以上红包的人中随机抽取2人,求甲、乙至少有一人被选中的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com